FADngs: Federated Learning for Anomaly Detection

计算机科学 异常检测 判别式 异常(物理) 集成学习 数据挖掘 人工智能 光学(聚焦) 机器学习 任务(项目管理) 编码(集合论) 工程类 物理 光学 凝聚态物理 系统工程 集合(抽象数据类型) 程序设计语言
作者
Boyu Dong,Dong Chen,Yu Wu,Siliang Tang,Yueting Zhuang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2578-2592 被引量:18
标识
DOI:10.1109/tnnls.2024.3350660
摘要

With the increasing demand for data privacy, federated learning (FL) has gained popularity for various applications. Most existing FL works focus on the classification task, overlooking those scenarios where anomaly detection may also require privacy-preserving. Traditional anomaly detection algorithms cannot be directly applied to the FL setting due to false and missing detection issues. Moreover, with common aggregation methods used in FL (e.g., averaging model parameters), the global model cannot keep the capacities of local models in discriminating anomalies deviating from local distributions, which further degrades the performance. For the aforementioned challenges, we propose Federated Anomaly Detection with Noisy Global Density Estimation, and Self-supervised Ensemble Distillation (FADngs). Specifically, FADngs aligns the knowledge of data distributions from each client by sharing processed density functions. Besides, FADngs trains local models in an improved contrastive learning way that learns more discriminative representations specific for anomaly detection based on the shared density functions. Furthermore, FADngs aggregates capacities by ensemble distillation, which distills the knowledge learned from different distributions to the global model. Our experiments demonstrate that the proposed method significantly outperforms state-of-the-art federated anomaly detection methods. We also empirically show that the shared density function is privacy-preserving. The code for the proposed method is provided for research purposes https://github.com/kanade00/Federated_Anomaly_detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
积极烧鹅完成签到,获得积分10
刚刚
我是老大应助科研通管家采纳,获得10
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
露风清夏完成签到,获得积分10
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
xiaobuding完成签到,获得积分10
1秒前
hhhh应助科研通管家采纳,获得10
1秒前
1秒前
orixero应助科研通管家采纳,获得10
1秒前
也无风雨也无晴完成签到,获得积分10
1秒前
共享精神应助路哈哈采纳,获得10
1秒前
星辰大海应助恬昱采纳,获得10
1秒前
cherry发布了新的文献求助10
1秒前
666发布了新的文献求助10
1秒前
粗心的忆山完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
深情安青应助肖雪依采纳,获得10
2秒前
邵振启发布了新的文献求助10
3秒前
lu2025发布了新的文献求助10
3秒前
感动城完成签到,获得积分10
3秒前
朴素的雪瑶完成签到,获得积分10
3秒前
幸福的蓝血完成签到,获得积分10
4秒前
LFB完成签到,获得积分10
4秒前
xinghe123完成签到,获得积分10
4秒前
mm应助帅气善斓采纳,获得10
5秒前
香蕉觅云应助甜甜圈采纳,获得10
5秒前
帅帅哈完成签到,获得积分10
6秒前
小蘑菇应助关畅澎采纳,获得10
6秒前
6秒前
6秒前
火星上的绿蕊完成签到,获得积分10
6秒前
噜噜噜完成签到 ,获得积分10
7秒前
7秒前
amy完成签到,获得积分10
7秒前
纵马长歌完成签到,获得积分10
7秒前
852应助无限安荷采纳,获得10
7秒前
科研辣椒完成签到,获得积分10
8秒前
董春伟完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651684
求助须知:如何正确求助?哪些是违规求助? 4785671
关于积分的说明 15055211
捐赠科研通 4810389
什么是DOI,文献DOI怎么找? 2573087
邀请新用户注册赠送积分活动 1529005
关于科研通互助平台的介绍 1487961