FADngs: Federated Learning for Anomaly Detection

计算机科学 异常检测 判别式 异常(物理) 集成学习 数据挖掘 人工智能 光学(聚焦) 机器学习 任务(项目管理) 物理 管理 光学 经济 凝聚态物理
作者
Bochen Dong,Dong Chen,Yu Wu,Siliang Tang,Yueting Zhuang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3350660
摘要

With the increasing demand for data privacy, federated learning (FL) has gained popularity for various applications. Most existing FL works focus on the classification task, overlooking those scenarios where anomaly detection may also require privacy-preserving. Traditional anomaly detection algorithms cannot be directly applied to the FL setting due to false and missing detection issues. Moreover, with common aggregation methods used in FL (e.g., averaging model parameters), the global model cannot keep the capacities of local models in discriminating anomalies deviating from local distributions, which further degrades the performance. For the aforementioned challenges, we propose Federated Anomaly Detection with Noisy Global Density Estimation, and Self-supervised Ensemble Distillation (FADngs). Specifically, FADngs aligns the knowledge of data distributions from each client by sharing processed density functions. Besides, FADngs trains local models in an improved contrastive learning way that learns more discriminative representations specific for anomaly detection based on the shared density functions. Furthermore, FADngs aggregates capacities by ensemble distillation, which distills the knowledge learned from different distributions to the global model. Our experiments demonstrate that the proposed method significantly outperforms state-of-the-art federated anomaly detection methods. We also empirically show that the shared density function is privacy-preserving. The code for the proposed method is provided for research purposes https://github.com/kanade00/Federated_Anomaly_detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人福药业完成签到,获得积分10
刚刚
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
细腻晓露发布了新的文献求助10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
刚刚
三里墩头应助科研通管家采纳,获得10
刚刚
天线宝宝应助科研通管家采纳,获得10
刚刚
wing00024完成签到,获得积分10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
刚刚
小马甲应助科研通管家采纳,获得10
1秒前
控制小弟应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
Leif应助科研通管家采纳,获得20
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
prosperp应助科研通管家采纳,获得10
1秒前
烟雨行舟发布了新的文献求助10
2秒前
燕尔蓝完成签到,获得积分10
2秒前
2秒前
2秒前
Ll发布了新的文献求助10
3秒前
3秒前
Sprite666完成签到,获得积分10
3秒前
Hu发布了新的文献求助10
3秒前
韭菜盒子发布了新的文献求助10
4秒前
故意的傲玉应助OveL采纳,获得30
4秒前
CC努力搞科研完成签到,获得积分10
4秒前
玩命的元槐完成签到,获得积分10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740