FADngs: Federated Learning for Anomaly Detection

计算机科学 异常检测 判别式 异常(物理) 集成学习 数据挖掘 人工智能 光学(聚焦) 机器学习 任务(项目管理) 编码(集合论) 工程类 物理 光学 凝聚态物理 系统工程 集合(抽象数据类型) 程序设计语言
作者
Boyu Dong,Dong Chen,Yu Wu,Siliang Tang,Yueting Zhuang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2578-2592 被引量:5
标识
DOI:10.1109/tnnls.2024.3350660
摘要

With the increasing demand for data privacy, federated learning (FL) has gained popularity for various applications. Most existing FL works focus on the classification task, overlooking those scenarios where anomaly detection may also require privacy-preserving. Traditional anomaly detection algorithms cannot be directly applied to the FL setting due to false and missing detection issues. Moreover, with common aggregation methods used in FL (e.g., averaging model parameters), the global model cannot keep the capacities of local models in discriminating anomalies deviating from local distributions, which further degrades the performance. For the aforementioned challenges, we propose Federated Anomaly Detection with Noisy Global Density Estimation, and Self-supervised Ensemble Distillation (FADngs). Specifically, FADngs aligns the knowledge of data distributions from each client by sharing processed density functions. Besides, FADngs trains local models in an improved contrastive learning way that learns more discriminative representations specific for anomaly detection based on the shared density functions. Furthermore, FADngs aggregates capacities by ensemble distillation, which distills the knowledge learned from different distributions to the global model. Our experiments demonstrate that the proposed method significantly outperforms state-of-the-art federated anomaly detection methods. We also empirically show that the shared density function is privacy-preserving. The code for the proposed method is provided for research purposes https://github.com/kanade00/Federated_Anomaly_detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余烬发布了新的文献求助10
1秒前
4秒前
傻子完成签到,获得积分10
4秒前
5秒前
7秒前
7秒前
Rick发布了新的文献求助10
10秒前
华仔应助满眼星辰采纳,获得10
11秒前
11秒前
12秒前
香蕉觅云应助平常的凝蕊采纳,获得30
13秒前
13秒前
可靠笑翠发布了新的文献求助10
13秒前
14秒前
maox1aoxin应助zhang-leo采纳,获得30
14秒前
14秒前
fishfun发布了新的文献求助10
15秒前
ww007完成签到,获得积分10
16秒前
ding应助Rick采纳,获得10
16秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
烟花应助Flynn采纳,获得10
18秒前
19秒前
花畦种豆完成签到,获得积分10
20秒前
扭一扭的奥利奥完成签到,获得积分10
21秒前
21秒前
李健应助无限妙梦采纳,获得10
22秒前
Bio应助感动背包采纳,获得30
22秒前
桐桐应助釉质牙医采纳,获得10
24秒前
24秒前
27秒前
Astrid发布了新的文献求助10
28秒前
29秒前
满眼星辰发布了新的文献求助10
29秒前
30秒前
31秒前
顾矜应助xiao xu采纳,获得10
31秒前
无限妙梦发布了新的文献求助10
35秒前
文静元霜发布了新的文献求助10
35秒前
有终完成签到 ,获得积分10
36秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167