UnstrPrompt: Large Language Model Prompt for Driving in Unstructured Scenarios

计算机科学 语言模型 自然语言处理
作者
Yuchen Li,Luxi Li,Zizhang Wu,Zhenshan Bing,Zhe Xuanyuan,Alois Knoll,Long Chen
出处
期刊:IEEE journal of radio frequency identification [Institute of Electrical and Electronics Engineers]
卷期号:8: 367-375 被引量:2
标识
DOI:10.1109/jrfid.2024.3367975
摘要

The integration of language descriptions or prompts with Large Language Models (LLMs) into visual tasks is currently a focal point in the advancement of autonomous driving. This study has showcased notable advancements across various standard datasets. Nevertheless, the progress in integrating language prompts faces challenges in unstructured scenarios, primarily due to the limited availability of paired data. To address this challenge, we introduce a groundbreaking language prompt set called "UnstrPrompt." This prompt set is derived from three prominent unstructured autonomous driving datasets: IDD, ORFD, and AutoMine, collectively comprising a total of 6K language descriptions. In response to the distinctive features of unstructured scenarios, we have developed a structured approach for prompt generation, encompassing three key components: scene, road, and instance. Additionally, we provide a detailed overview of the language generation process and the validation procedures. We conduct tests on segmentation tasks, and our experiments have demonstrated that text-image fusion can improve accuracy by more than 3% on unstructured data. Additionally, our description architecture outperforms the generic urban architecture by more than 0.1%. This work holds the potential to advance various aspects such as interaction and foundational models in this scenario.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ariels完成签到,获得积分10
2秒前
Wink14551发布了新的文献求助10
3秒前
汉堡包应助ganlelelele采纳,获得20
3秒前
唐咩咩咩完成签到,获得积分10
4秒前
5秒前
5秒前
青栀完成签到,获得积分10
5秒前
冰勾板勾发布了新的文献求助30
5秒前
田様应助jingjingbang采纳,获得10
6秒前
爰采唐矣完成签到,获得积分10
6秒前
wang完成签到,获得积分10
6秒前
CipherSage应助yema采纳,获得10
6秒前
健康的襄完成签到,获得积分20
7秒前
7秒前
Borwn发布了新的文献求助10
8秒前
dopamine发布了新的文献求助10
8秒前
爰采唐矣发布了新的文献求助10
9秒前
10秒前
10秒前
wang发布了新的文献求助30
11秒前
11秒前
大个应助lyq777采纳,获得10
11秒前
fangfang完成签到,获得积分10
11秒前
12秒前
18°N天水色完成签到,获得积分10
12秒前
蕊蕊完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
15秒前
15秒前
16秒前
蕊蕊发布了新的文献求助10
16秒前
含蓄朝雪完成签到,获得积分10
20秒前
shihuili发布了新的文献求助20
20秒前
cjw123发布了新的文献求助10
20秒前
20秒前
seannnnnnn完成签到,获得积分10
21秒前
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944