神经科学
临界性
清醒
睡眠(系统调用)
背景(考古学)
心理学
睡眠神经科学
脑电图
计算机科学
物理
生物
操作系统
古生物学
核物理学
作者
Yifan Xu,Aidan Schneider,Ralf Weßel,Keith B. Hengen
标识
DOI:10.1038/s41593-023-01536-9
摘要
Sleep is assumed to subserve homeostatic processes in the brain; however, the set point around which sleep tunes circuit computations is unknown. Slow-wave activity (SWA) is commonly used to reflect the homeostatic aspect of sleep; although it can indicate sleep pressure, it does not explain why animals need sleep. This study aimed to assess whether criticality may be the computational set point of sleep. By recording cortical neuron activity continuously for 10-14 d in freely behaving rats, we show that normal waking experience progressively disrupts criticality and that sleep functions to restore critical dynamics. Criticality is perturbed in a context-dependent manner, and waking experience is causal in driving these effects. The degree of deviation from criticality predicts future sleep/wake behavior more accurately than SWA, behavioral history or other neural measures. Our results demonstrate that perturbation and recovery of criticality is a network homeostatic mechanism consistent with the core, restorative function of sleep.
科研通智能强力驱动
Strongly Powered by AbleSci AI