Aerial imagery-based tobacco plant counting framework for efficient crop emergence estimation

计算机科学 目标检测 人口 人工智能 分割 农业工程 工程类 人口学 社会学
作者
Ramsha Shahid,Waqar S. Qureshi,Umar Shahbaz Khan,Arslan Munir,Ayesha Zeb,S. Imran Moazzam
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108557-108557 被引量:15
标识
DOI:10.1016/j.compag.2023.108557
摘要

Crop emergence estimation at early crop growth stages is becoming increasingly important for the long-term sustainability of natural resources. It helps farmers and agricultural stakeholders in the efficient allocation of resources like water, pesticides, and fertilizers. It can be used to estimate the yield and seed quality, identify the region of potential yield losses, and make future agriculture plans. These future agriculture plans can play a crucial role in ensuring maximum crop population and yield while utilizing the same limited land and natural resources. Most of the existing plant counting frameworks require offline processing of images with computationally expensive algorithms including the structure for motion and multiview stereo to develop an orthomosaic. This study proposed a tobacco plant counting framework that directly estimates counts from aerial images and has the potential for real-time applicability. It consists of three core modules: overlap detection, plant detection, and plant counting. The overlap detection module replaces the need for computationally expensive orthomosaic formation to avoid counting repetition by overlap masking based on only visual cues. Three different methods are evaluated as core modules for finding an optimal solution for plant counting based on time complexity and accuracy. In the first method after overlap detection, semantic segmentation with U-NET is employed as a plant detection module. For plant counting, we count the connected pixels classified as plants to estimate the crop count. In the second method after overlap detection, object detection using YOLOv7 is utilized as a plant detection module followed by simply counting each detected plant. In the third method, we utilize YOLOv7 for object detection, similar to the second method. However, we introduce the SORT (Simple Online and Realtime Tracking) algorithm for object tracking. This object tracking replaces the overlap detection module making it a real-time applicable method. For plant counting, we assess the number of tracked plants. The proposed algorithm is evaluated on two distinct tobacco fields. The high-resolution aerial data is collected from tobacco fields near Peshawar, Pakistan, and is human-labelled. The first and second methods show average F1 scores of 0.947 and 0.9667, respectively, whereas the third method has the potential for real-time applicability with an average F1 score of 0.967.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得10
刚刚
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
安晚完成签到,获得积分10
刚刚
ll完成签到,获得积分10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
欣雨秋尘应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
咚咚发布了新的文献求助30
3秒前
3秒前
情怀应助高山流水采纳,获得10
3秒前
胖胖胖胖完成签到,获得积分10
4秒前
GYR发布了新的文献求助10
4秒前
XPY完成签到,获得积分10
4秒前
韩老魔完成签到,获得积分10
5秒前
脑洞疼应助郑雯予采纳,获得10
5秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348442
求助须知:如何正确求助?哪些是违规求助? 4482447
关于积分的说明 13951205
捐赠科研通 4381258
什么是DOI,文献DOI怎么找? 2407251
邀请新用户注册赠送积分活动 1399895
关于科研通互助平台的介绍 1373137