Aerial imagery-based tobacco plant counting framework for efficient crop emergence estimation

计算机科学 目标检测 人口 人工智能 分割 农业工程 工程类 人口学 社会学
作者
Ramsha Shahid,Waqar S. Qureshi,Umar Shahbaz Khan,Arslan Munir,Ayesha Zeb,S. Imran Moazzam
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108557-108557 被引量:15
标识
DOI:10.1016/j.compag.2023.108557
摘要

Crop emergence estimation at early crop growth stages is becoming increasingly important for the long-term sustainability of natural resources. It helps farmers and agricultural stakeholders in the efficient allocation of resources like water, pesticides, and fertilizers. It can be used to estimate the yield and seed quality, identify the region of potential yield losses, and make future agriculture plans. These future agriculture plans can play a crucial role in ensuring maximum crop population and yield while utilizing the same limited land and natural resources. Most of the existing plant counting frameworks require offline processing of images with computationally expensive algorithms including the structure for motion and multiview stereo to develop an orthomosaic. This study proposed a tobacco plant counting framework that directly estimates counts from aerial images and has the potential for real-time applicability. It consists of three core modules: overlap detection, plant detection, and plant counting. The overlap detection module replaces the need for computationally expensive orthomosaic formation to avoid counting repetition by overlap masking based on only visual cues. Three different methods are evaluated as core modules for finding an optimal solution for plant counting based on time complexity and accuracy. In the first method after overlap detection, semantic segmentation with U-NET is employed as a plant detection module. For plant counting, we count the connected pixels classified as plants to estimate the crop count. In the second method after overlap detection, object detection using YOLOv7 is utilized as a plant detection module followed by simply counting each detected plant. In the third method, we utilize YOLOv7 for object detection, similar to the second method. However, we introduce the SORT (Simple Online and Realtime Tracking) algorithm for object tracking. This object tracking replaces the overlap detection module making it a real-time applicable method. For plant counting, we assess the number of tracked plants. The proposed algorithm is evaluated on two distinct tobacco fields. The high-resolution aerial data is collected from tobacco fields near Peshawar, Pakistan, and is human-labelled. The first and second methods show average F1 scores of 0.947 and 0.9667, respectively, whereas the third method has the potential for real-time applicability with an average F1 score of 0.967.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
4秒前
4秒前
6秒前
ypres完成签到 ,获得积分10
6秒前
1993963发布了新的文献求助10
7秒前
HHHHH完成签到,获得积分10
7秒前
陈昭琼发布了新的文献求助10
8秒前
执着芷卉完成签到 ,获得积分10
8秒前
friend516完成签到 ,获得积分10
13秒前
沉默洋葱完成签到,获得积分10
16秒前
16秒前
bigsaopig完成签到,获得积分10
17秒前
健壮的飞烟完成签到,获得积分10
17秒前
救我完成签到,获得积分10
18秒前
古代之月完成签到,获得积分10
18秒前
Xx完成签到 ,获得积分10
19秒前
ZXD1989完成签到 ,获得积分10
21秒前
sdjjis完成签到 ,获得积分10
23秒前
优雅莞完成签到,获得积分0
23秒前
求助人员应助阿俊采纳,获得10
23秒前
舒心溪灵完成签到,获得积分10
25秒前
Shadow完成签到,获得积分10
26秒前
追尾的猫完成签到 ,获得积分10
26秒前
Ashore完成签到,获得积分10
27秒前
27秒前
sandyleung完成签到,获得积分10
27秒前
jie完成签到 ,获得积分10
28秒前
weidongwu完成签到,获得积分10
34秒前
liuxianglin2006完成签到,获得积分10
36秒前
自由雪菲力完成签到,获得积分10
39秒前
yafei完成签到 ,获得积分10
40秒前
科研醉汉完成签到,获得积分10
42秒前
愉快涵菱发布了新的文献求助10
44秒前
jie完成签到 ,获得积分10
44秒前
不想长大完成签到 ,获得积分10
45秒前
浊轶完成签到 ,获得积分10
46秒前
xiaoyan完成签到,获得积分10
47秒前
明亮的代灵完成签到 ,获得积分0
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603497
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14853964
捐赠科研通 4693022
什么是DOI,文献DOI怎么找? 2540784
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471781