已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Domain adaptation-based sparse time-frequency analysis and its application on seismic attenuation estimation

衰减 频域 计算机科学 时域 地质学 估计 地震学 领域(数学分析) 算法 声学 数学 计算机视觉 物理 光学 工程类 数学分析 系统工程
作者
Naihao Liu,Yuxin Zhang,Yang Yang,Zhiguo Wang,Rongchang Liu,Jinghuai Gao
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (3): B187-B198 被引量:2
标识
DOI:10.1190/geo2023-0309.1
摘要

Time-frequency (TF) transform is a commonly used tool for geologic structure interpretation and attenuation estimation, mainly including the linear and nonlinear methods. The former consists of short-time Fourier transform, continuous wavelet transform, S-transform, etc., which can be efficiently implemented. However, they suffer from the Gabor uncertainty principle, which limits their TF readability. The latter can effectively enhance TF readability; nevertheless, it has several unavoidable drawbacks, such as low computational efficiency and parameter selection. For seismic sparse TF (STF) analysis (STFA), we develop a domain adaptation-based STFA (DASTFA) model. This model mainly contains two steps. First, we suggest an STF network (STFNet) for mapping a 1D seismic signal to a 2D STF spectrum, which is pretrained using synthetic traces and STF labels. Second, based on the pretrained STFNet, we design a DASTFA model for transferring to field data. Note that the synthetic traces are generated using well-log data and horizon at the study area, located in the Ordos Basin, China, which can reduce the gap between synthetic and field data. Afterward, we use synthetic traces with their STF labels for model pretraining in the first step and field data without STF labels for model transferring in the second step. Here, model transferring indicates transferring the pretrained model parameters based on field traces. Finally, to test the validity and effectiveness of DASTFA, we apply it to synthetic and field data. Moreover, we test the availability of seismic attenuation estimation by adopting the suggested model for 3D poststack field data volume, which achieved encouraging results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矫健的man发布了新的文献求助10
刚刚
honger完成签到,获得积分10
刚刚
吴世勋fans发布了新的文献求助10
刚刚
星辰大海应助双勾玉采纳,获得10
1秒前
3秒前
3秒前
爆米花应助金扇扇采纳,获得10
3秒前
3秒前
隐形曼青应助coco采纳,获得10
4秒前
5秒前
三新荞应助1234采纳,获得10
5秒前
发发发完成签到,获得积分10
6秒前
迪迦完成签到,获得积分10
6秒前
7秒前
18746005898发布了新的文献求助10
9秒前
华仔应助bioinformation采纳,获得10
9秒前
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得30
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
deman完成签到 ,获得积分10
12秒前
美满冷安发布了新的文献求助10
12秒前
跳跃发布了新的文献求助10
12秒前
笨笨西牛完成签到 ,获得积分10
13秒前
13秒前
16秒前
隐形曼青应助聪慧的孤兰采纳,获得10
16秒前
Lucas应助yeurekar采纳,获得10
16秒前
17秒前
爻解发布了新的文献求助10
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229535
求助须知:如何正确求助?哪些是违规求助? 2877143
关于积分的说明 8197956
捐赠科研通 2544488
什么是DOI,文献DOI怎么找? 1374419
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749