Immunophenotyping with high-dimensional flow cytometry identifies Treg cell subsets associated with recurrence in papillary thyroid carcinoma

免疫分型 流式细胞术 FOXP3型 医学 免疫组织化学 甲状腺癌 病理 多路复用 甲状腺 癌症研究 内科学 免疫学 生物 免疫系统 生物信息学
作者
Sijin Li,Zhen Chen,Mengchu Liu,Liang Li,Wen-song Cai,Zhe‐Xiong Lian,Haixia Guan,Bo Xu
出处
期刊:Endocrine-related Cancer [Bioscientifica]
卷期号:31 (3) 被引量:4
标识
DOI:10.1530/erc-23-0240
摘要

The activation of Treg cell subsets is critical for the prognosis of tumor patients; however, their heterogeneity and disease association in papillary thyroid carcinoma (PTC) need further investigation. We performed high-dimensional flow cytometry for immunophenotyping on thyroid tissues and matched peripheral blood samples from patients with multinodular goiters or PTC. We analyzed CD4 + T cell and Treg cell phenotypes and compared the recurrence-free survival of PTC patients with different Treg cell subset characteristics using TCGA. Furthermore, PTC recurrent and non-recurrent group were compared by multiplex immunohistochemistry. High-dimensional flow cytometry and bioinformatics analysis revealed an enrichment of Tregs in tumors compared with multinodular goiters and peripheral blood specimens. Moreover, effector Tregs (e-Tregs) as well as FOXP3 + non-Tregs were enriched in tumor samples, and the expression of CD39, PD-1, and CD103 increased on tumor Tregs. TCGA data analysis showed that individuals with CD39 hi PD-1 lo CD103 lo e-Treg hi and CD39 lo PD-1 lo CD103 hi e-Treg hi expression patterns had a high recurrence rate. According to the multiplex immunohistochemistry and analysis, compared with non-recurrent group, the proportion of high recurrence rate effector Treg clusters (CD39 + PD-1 − CD103 − plus CD39 − PD-1 − CD103 + ) was increased in recurrent patients. Overall, our results highlight the potential of e-Treg subsets as future immunotherapy targets for PTC recurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
陶军辉完成签到 ,获得积分10
1秒前
感动清炎完成签到,获得积分10
3秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
chrisio应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
Clara应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
4秒前
Tao应助科研通管家采纳,获得10
4秒前
BareBear应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
ludong_0应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
BareBear应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得10
4秒前
BareBear应助科研通管家采纳,获得10
4秒前
BareBear应助科研通管家采纳,获得10
4秒前
4秒前
chrisio应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得20
4秒前
hsq应助科研通管家采纳,获得10
4秒前
suzhenyue应助科研通管家采纳,获得10
4秒前
一二应助科研通管家采纳,获得10
4秒前
Hanoi347应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
你好你好完成签到 ,获得积分10
11秒前
温暖的天与完成签到 ,获得积分10
11秒前
zqy完成签到,获得积分10
13秒前
14秒前
luckyhan完成签到 ,获得积分10
16秒前
老福贵儿完成签到,获得积分0
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498677
求助须知:如何正确求助?哪些是违规求助? 4595836
关于积分的说明 14450003
捐赠科研通 4528827
什么是DOI,文献DOI怎么找? 2481735
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438581