LumVertCancNet: A novel 3D lumbar vertebral body cancellous bone location and segmentation method based on hybrid Swin-transformer

计算机科学 分割 人工智能 松质骨 腰椎 腰椎 深度学习 编码器 卷积神经网络 计算机视觉 模式识别(心理学) 医学 放射科 解剖 操作系统
作者
Yingdi Zhang,Zelin Shi,Huan Wang,Shiying Cui,Lei Zhang,Jiachen Liu,Xiuqi Shan,Yunpeng Liu,Fang Lei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108237-108237
标识
DOI:10.1016/j.compbiomed.2024.108237
摘要

Lumbar vertebral body cancellous bone location and segmentation is crucial in an automated lumbar spine processing pipeline. Accurate and reliable analysis of lumbar spine image is expected to advantage practical medical diagnosis and population-based analysis of bone strength. However, the design of automated algorithms for lumbar spine processing is demanding due to significant anatomical variations and scarcity of publicly available data. In recent years, convolutional neural network (CNN) and vision transformers (Vits) have been the de facto standard in medical image segmentation. Although adept at capturing global features, the inherent bias of locality and weight sharing of CNN constrains its capacity to model long-range dependency. In contrast, Vits excel at long-range dependency modeling, but they may not generalize well with limited datasets due to the lack of inductive biases inherent to CNN. In this paper, we propose a deep learning-based two-stage coarse-to-fine solution to address the problem of automatic location and segmentation of lumbar vertebral body cancellous bone. Specifically, in the first stage, a Swin-transformer based model is applied to predict the heatmap of lumbar vertebral body centroids. Considering the characteristic anatomical structure of lumbar spine, we propose a novel loss function called LumAnatomy loss, which enforces the order and bend of the predicted vertebral body centroids. To inherit the excellence of CNN and Vits while preventing their respective limitations, in the second stage, we propose an encoder-decoder network to segment the identified lumbar vertebral body cancellous bone, which consists of two parallel encoders, i.e., a Swin-transformer encoder and a CNN encoder. To enhance the combination of CNNs and Vits, we propose a novel multi-scale attention feature fusion module (MSA-FFM), which address issues that arise when fusing features given at different encoders. To tackle the issue of lack of data, we raise the first large-scale lumbar vertebral body cancellous bone segmentation dataset called LumVBCanSeg containing a total of 185 CT scans annotated at voxel level by 3 physicians. Extensive experimental results on the LumVBCanSeg dataset demonstrate the proposed algorithm outperform other state-of-the-art medical image segmentation methods. The data is publicly available at: https://zenodo.org/record/8181250. The implementation of the proposed method is available at: https://github.com/sia405yd/LumVertCancNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助zhuzhumelody采纳,获得10
刚刚
欣欣完成签到,获得积分10
1秒前
猫咪老师应助zwc采纳,获得30
1秒前
敷衍完成签到,获得积分10
2秒前
英俊的铭应助BSDL采纳,获得10
2秒前
2秒前
2秒前
3秒前
MOA完成签到,获得积分10
3秒前
科研通AI2S应助烂漫友易采纳,获得10
3秒前
3秒前
3秒前
3秒前
小佛爷完成签到 ,获得积分10
4秒前
如意完成签到,获得积分10
4秒前
哈贝喵发布了新的文献求助10
5秒前
阿rain完成签到,获得积分10
5秒前
柚子发布了新的文献求助10
5秒前
WJ完成签到,获得积分10
5秒前
MY发布了新的文献求助10
6秒前
CipherSage应助细心的亦凝采纳,获得10
6秒前
6秒前
wanci应助科研通管家采纳,获得10
6秒前
kokoka应助科研通管家采纳,获得10
6秒前
yijian完成签到,获得积分10
6秒前
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
7秒前
LC应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
wewewew发布了新的文献求助10
7秒前
度度发布了新的文献求助10
7秒前
要笑发布了新的文献求助10
7秒前
ninimi完成签到,获得积分10
8秒前
香蕉觅云应助QWE采纳,获得10
8秒前
HRX发布了新的文献求助10
8秒前
余小平完成签到,获得积分10
8秒前
英俊的铭应助王晓萌采纳,获得10
9秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168966
求助须知:如何正确求助?哪些是违规求助? 2820245
关于积分的说明 7929811
捐赠科研通 2480332
什么是DOI,文献DOI怎么找? 1321320
科研通“疑难数据库(出版商)”最低求助积分说明 633191
版权声明 602497