Enhancing mineral prospectivity mapping with geospatial artificial intelligence: A geographically neural network-weighted logistic regression approach

远景图 地理空间分析 逻辑回归 地理加权回归模型 地理 人工神经网络 地图学 人工智能 数据挖掘 计算机科学 地质学 机器学习 统计 数学 地貌学 构造盆地
作者
Luoqi Wang,Jie Yang,Sensen Wu,Linshu Hu,Yunzhao Ge,Zhenhong Du
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103746-103746 被引量:1
标识
DOI:10.1016/j.jag.2024.103746
摘要

Accurate prediction of mineral resources is imperative to meet the energy demands of modern society. Nonetheless, this task is often difficult due to estimation bias and limited interpretability of conventional statistical techniques and machine learning methods. To address these shortcomings, we propose a novel geospatial artificial intelligence approach, denoted as geographically neural network-weighted logistic regression, for mineral prospectivity mapping. This model integrates spatial patterns and neural networks, combined with the Shapley additive explanations theory to achieve accurate forecasts and provide explainable insight into mineralization within intricate spatial contexts. In a gold prospecting experiment conducted in Nova Scotia, our model outperformed other state-of-the-art models with a 5% to 16% increase in the area under the receiver operating characteristic curve metric. The presented framework further provided intuitive quantifications of the impact of geological factors on the gold mineralization in spatial settings. The innovative approach promotes novel phenomenon detection and exhibits robust capabilities and universality for classification problems within complex spatial scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助清脆的台灯采纳,获得10
刚刚
文车发布了新的文献求助10
1秒前
1秒前
1秒前
落后的寄文完成签到,获得积分10
2秒前
2秒前
CodeCraft应助Gin采纳,获得10
2秒前
白白完成签到,获得积分10
2秒前
魔幻蓉完成签到,获得积分10
3秒前
3秒前
曹能豪发布了新的文献求助10
3秒前
朱瑾莹完成签到,获得积分20
3秒前
标致凝莲发布了新的文献求助50
3秒前
zxx完成签到 ,获得积分0
3秒前
神啊救救我吧完成签到,获得积分10
4秒前
顾矜应助尺八采纳,获得10
4秒前
5秒前
完美世界应助小璐采纳,获得10
5秒前
华仔应助沉默的罡采纳,获得10
6秒前
可耐的思远完成签到,获得积分10
6秒前
6秒前
屿顾完成签到,获得积分10
6秒前
huanir99发布了新的文献求助30
7秒前
7秒前
白鸽完成签到,获得积分20
7秒前
缓慢的可乐完成签到,获得积分10
8秒前
枫叶发布了新的文献求助30
8秒前
8秒前
GuAte完成签到,获得积分10
9秒前
9秒前
要发财关注了科研通微信公众号
10秒前
10秒前
曹能豪完成签到,获得积分10
10秒前
badada完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
11秒前
dgd发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530