已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Prior Guided Wavelet-Spatial Dual Attention Transformer Framework for Heavy Rain Image Restoration

计算机科学 小波 变压器 计算机视觉 人工智能 图像复原 小波变换 图像处理 图像(数学) 模式识别(心理学) 电气工程 工程类 电压
作者
Ronghui Zhang,J. Yu,Junzhou Chen,Guofa Li,Liang Lin,Danwei Wang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7043-7057
标识
DOI:10.1109/tmm.2024.3359480
摘要

Heavy rain significantly reduces image visibility, hindering tasks like autonomous driving and video surveillance. Many existing rain removal methods, while effective in light rain, falter under heavy rain due to their reliance on purely spatial features. Recognizing this challenge, we introduce the Wavelet-Spatial Dual Attention Transformer Framework (WSDformer). This innovative architecture adeptly captures both frequency and spatial characteristics, anchored by the wavelet-spatial dual attention (WSDA) mechanism. While the spatial attention zeroes in on intricate local details, the wavelet attention leverages wavelet decomposition to encompass diverse frequency information, augmenting the spatial representations. Furthermore, addressing the persistent issue of incomplete structural detail restoration, we integrate the PriorFormer Block (PFB). This unique module, underpinned by the Prior Fusion Attention (PFA), synergizes residual channel prior features with input features, thereby enhancing background structures and guiding precise rain feature extraction. To navigate the intrinsic constraints of U-shaped transformers, such as semantic discontinuities and subdued multi-scale interactions from skip connections, our Cross Interaction U-Shaped Transformer Network is introduced. This design empowers superior semantic layers to streamline the extraction of their lower-tier counterparts, optimizing network learning. Empirical analysis reveals our method's leading prowess across rainy image datasets and achieves state-of-the-art performance, with notable supremacy in heavy rainfall conditions. This superiority extends to diverse visual challenges and real-world rainy scenarios, affirming its broad applicability and robustness. The source code is available at https://github.com/Jiongze-Yu/WSDformer .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
Cccc小懒完成签到,获得积分10
5秒前
zxb发布了新的文献求助10
6秒前
hd发布了新的文献求助10
8秒前
10秒前
斯文败类应助tleeny采纳,获得10
12秒前
机灵鼠标发布了新的文献求助10
14秒前
田様应助堀江真夏采纳,获得10
16秒前
123456完成签到,获得积分10
16秒前
orixero应助迅速怜寒采纳,获得30
17秒前
安安完成签到 ,获得积分10
18秒前
精明云朵完成签到 ,获得积分10
19秒前
22秒前
子焱完成签到,获得积分10
22秒前
落后煜城完成签到,获得积分10
23秒前
情怀应助机灵鼠标采纳,获得10
25秒前
zkji发布了新的文献求助10
27秒前
123发布了新的文献求助10
30秒前
Cccc小懒发布了新的文献求助10
32秒前
纪梵希完成签到,获得积分10
33秒前
落后煜城发布了新的文献求助10
35秒前
隐形曼青应助zkji采纳,获得10
35秒前
二十发布了新的文献求助30
35秒前
37秒前
jinni完成签到,获得积分10
37秒前
renpp822发布了新的文献求助10
39秒前
今后应助科研通管家采纳,获得10
39秒前
Akim应助科研通管家采纳,获得10
39秒前
共享精神应助科研通管家采纳,获得10
39秒前
Akim应助科研通管家采纳,获得80
39秒前
39秒前
shinysparrow应助科研通管家采纳,获得200
39秒前
Fandebiao应助科研通管家采纳,获得10
39秒前
Akim应助科研通管家采纳,获得10
39秒前
纪梵希发布了新的文献求助10
40秒前
香蕉觅云应助Cuinewb采纳,获得30
40秒前
堀江真夏发布了新的文献求助10
41秒前
周周完成签到,获得积分10
47秒前
Akim应助mozhi采纳,获得10
49秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161905
求助须知:如何正确求助?哪些是违规求助? 2813139
关于积分的说明 7898729
捐赠科研通 2472140
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129