Development of a Multimodal Machine Learning-Based Prognostication Model for Traumatic Brain Injury Using Clinical Data and Computed Tomography Scans: A CENTER-TBI and CINTER-TBI Study

创伤性脑损伤 医学 计算机断层摄影术 放射科 精神科
作者
Atsuhiro Hibi,Michael D. Cusimano,Alexander Bilbily,Rahul G. Krishnan,Pascal N. Tyrrell
出处
期刊:Journal of Neurotrauma [Mary Ann Liebert]
卷期号:41 (11-12): 1323-1336
标识
DOI:10.1089/neu.2023.0446
摘要

Computed tomography (CT) is an important imaging modality for guiding prognostication in patients with traumatic brain injury (TBI). However, because of the specialized expertise necessary, timely and dependable TBI prognostication based on CT imaging remains challenging. This study aimed to enhance the efficiency and reliability of TBI prognostication by employing machine learning (ML) techniques on CT images. A retrospective analysis was conducted on the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) data set (n = 1016). An ML-driven binary classifier was developed to predict favorable or unfavorable outcomes at 6 months post-injury. The prognostic performance was assessed using the area under the curve (AUC) over fivefold cross-validation and compared with conventional models that depend on clinical variables and CT scoring systems. An external validation was performed using the Comparative Indian Neurotrauma Effectiveness Research in Traumatic Brain Injury (CINTER-TBI) data set (n = 348). The developed model achieved superior performance without the necessity for manual CT assessments (AUC = 0.846 [95% CI: 0.843–0.849]) compared with the model based on the clinical and laboratory variables (AUC = 0.817 [95% CI: 0.814–0.820]) and established CT scoring systems requiring manual interpretations (AUC = 0.829 [95% CI: 0.826–0.832] for Marshall and 0.838 [95% CI: 0.835–0.841] for International Mission for Prognosis and Analysis of Clinical Trials in TBI [IMPACT]). The external validation demonstrated the prognostic capacity of the developed model to be significantly better (AUC = 0.859 [95% CI: 0.857–0.862]) than the model using clinical variables (AUC = 0.809 [95% CI: 0.798–0.820]). This study established an ML-based model that provides efficient and reliable TBI prognosis based on CT scans, with potential implications for earlier intervention and improved patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
睡觉啦发布了新的文献求助10
1秒前
liujiahao完成签到,获得积分10
1秒前
听雪冬眠完成签到,获得积分10
1秒前
西窗同学完成签到,获得积分10
2秒前
不是省油的灯完成签到,获得积分10
2秒前
2秒前
坚果完成签到,获得积分10
2秒前
林洁佳发布了新的文献求助10
2秒前
3秒前
冷傲的山菡完成签到,获得积分10
3秒前
3秒前
顺利科研毕业完成签到,获得积分10
3秒前
4秒前
4秒前
大个应助陈曦读研版采纳,获得10
4秒前
orixero应助OrangeBlueHeart采纳,获得10
4秒前
儒雅厉完成签到,获得积分10
5秒前
白白发布了新的文献求助10
5秒前
李林鑫完成签到 ,获得积分10
5秒前
5秒前
甜蜜靖雁发布了新的文献求助10
5秒前
无极微光应助wzy采纳,获得20
5秒前
脑洞疼应助执着半凡采纳,获得10
6秒前
邢女士完成签到,获得积分10
6秒前
浮游应助丧彪采纳,获得10
6秒前
7秒前
琉璃完成签到,获得积分10
7秒前
dawn完成签到,获得积分10
7秒前
邱天发布了新的文献求助30
7秒前
领导范儿应助田泽和采纳,获得10
7秒前
8秒前
8秒前
8秒前
9秒前
睡觉啦完成签到,获得积分10
9秒前
chenhouhan发布了新的文献求助10
9秒前
yunfulu29完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
zmm完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629530
求助须知:如何正确求助?哪些是违规求助? 4720219
关于积分的说明 14969927
捐赠科研通 4787582
什么是DOI,文献DOI怎么找? 2556376
邀请新用户注册赠送积分活动 1517512
关于科研通互助平台的介绍 1478188