Development of a Multimodal Machine Learning-Based Prognostication Model for Traumatic Brain Injury Using Clinical Data and Computed Tomography Scans: A CENTER-TBI and CINTER-TBI Study

创伤性脑损伤 医学 计算机断层摄影术 放射科 精神科
作者
Atsuhiro Hibi,Michael D. Cusimano,Alexander Bilbily,Rahul G. Krishnan,Pascal N. Tyrrell
出处
期刊:Journal of Neurotrauma [Mary Ann Liebert, Inc.]
卷期号:41 (11-12): 1323-1336
标识
DOI:10.1089/neu.2023.0446
摘要

Computed tomography (CT) is an important imaging modality for guiding prognostication in patients with traumatic brain injury (TBI). However, because of the specialized expertise necessary, timely and dependable TBI prognostication based on CT imaging remains challenging. This study aimed to enhance the efficiency and reliability of TBI prognostication by employing machine learning (ML) techniques on CT images. A retrospective analysis was conducted on the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) data set (n = 1016). An ML-driven binary classifier was developed to predict favorable or unfavorable outcomes at 6 months post-injury. The prognostic performance was assessed using the area under the curve (AUC) over fivefold cross-validation and compared with conventional models that depend on clinical variables and CT scoring systems. An external validation was performed using the Comparative Indian Neurotrauma Effectiveness Research in Traumatic Brain Injury (CINTER-TBI) data set (n = 348). The developed model achieved superior performance without the necessity for manual CT assessments (AUC = 0.846 [95% CI: 0.843–0.849]) compared with the model based on the clinical and laboratory variables (AUC = 0.817 [95% CI: 0.814–0.820]) and established CT scoring systems requiring manual interpretations (AUC = 0.829 [95% CI: 0.826–0.832] for Marshall and 0.838 [95% CI: 0.835–0.841] for International Mission for Prognosis and Analysis of Clinical Trials in TBI [IMPACT]). The external validation demonstrated the prognostic capacity of the developed model to be significantly better (AUC = 0.859 [95% CI: 0.857–0.862]) than the model using clinical variables (AUC = 0.809 [95% CI: 0.798–0.820]). This study established an ML-based model that provides efficient and reliable TBI prognosis based on CT scans, with potential implications for earlier intervention and improved patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助yyf采纳,获得10
刚刚
1秒前
2秒前
2秒前
2秒前
3秒前
酷波er应助魔幻的泽洋采纳,获得10
3秒前
路基发布了新的文献求助10
3秒前
6秒前
香蕉觅云应助结实大侠采纳,获得10
6秒前
7秒前
科研鸟发布了新的文献求助10
7秒前
liuzili关注了科研通微信公众号
7秒前
9秒前
深情安青应助学术虫采纳,获得10
9秒前
10秒前
10秒前
mj完成签到,获得积分10
11秒前
11秒前
理想发布了新的文献求助10
12秒前
12秒前
今后应助犹豫小蚂蚁采纳,获得10
12秒前
ding应助miaomiao采纳,获得10
14秒前
14秒前
14秒前
hxnz2001发布了新的文献求助10
15秒前
15秒前
17秒前
17秒前
科目三应助T拐拐采纳,获得10
17秒前
聚光灯下完成签到,获得积分10
17秒前
怕黑的静蕾应助yuqinghui98采纳,获得10
19秒前
科研通AI5应助beenest采纳,获得10
19秒前
CHEN完成签到 ,获得积分10
19秒前
酷波er应助个性的帽子采纳,获得10
23秒前
23秒前
23秒前
26秒前
芒果爸爸完成签到,获得积分10
26秒前
科研鸟发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420