Geographical discrimination of Paw San rice cultivated in different regions of Myanmar using near-infrared spectroscopy, headspace-gas chromatography-ion mobility spectrometry and chemometrics

化学 化学计量学 离子迁移光谱法 质谱法 色谱法 判别式 计算机科学 人工智能
作者
Saw Thantar,Alīna Mihailova,Marivil Islam,Florence Maxwell,Islam Hamed,Christina Vlachou,Simon D. Kelly
出处
期刊:Talanta [Elsevier]
卷期号:: 125910-125910 被引量:1
标识
DOI:10.1016/j.talanta.2024.125910
摘要

Paw San rice, also known as "Myanmar pearl rice", is considered the highest quality rice in Myanmar. There are considerable differences in terms of the premium commercial value of Paw San rice, which is an incentive for fraud, e.g. adulteration with cheaper rice varieties or mislabelling its geographical origin. Shwe Bo District is one of the most popular rice growing areas in the Sagaing region of Myanmar which produces the most valued and highly priced Paw San rice (Shwe Bo Paw San). The verification of the geographical origin of Paw San rice is not readily undertaken in the rice supply chain because the existing analytical approaches are time-consuming and expensive. Therefore, there is a need for rapid, robust and cost-effective analytical techniques for monitoring the authenticity and geographical origin of Paw San rice. In this 4-year study, two rapid screening techniques, Fourier-transform near-infrared (FT-NIR) spectroscopy and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), coupled with chemometric modelling, were applied and compared for the regional differentiation of Paw San rice. In addition, low-level fusion of the FT-NIR and HS-GC-IMS data was performed and its effect on the discriminative power of the chemometric models was assessed. Extensive model validation, including the validation using independent samples from a different production year, was performed. Furthermore, the effect of the sample preparation technique (grinding versus no sample preparation) on the performance of the discriminative model, obtained with FT-NIR spectral data, was assessed. The study discusses the suitability of FT-NIR spectroscopy, HS-GC-IMS and the combination of both approaches for rapid determination of the geographical origin of Paw San rice. The results demonstrated the excellent potential of the FT-NIR spectroscopy as well as HS-GC-IMS for the differentiation of Paw San rice cultivated in two distinct geographical regions. The OPLS-DA model, built using FT-NIR data of rice from 3 production years, achieved 96.67% total correct classification rate of an independent dataset from the 4th production year. The DD-SIMCA model, built using FT-NIR data of ground rice, also demonstrated the highest performance: 94% sensitivity and 97% specificity. This study has demonstrated that FT-NIR spectroscopy can be used as an accessible, rapid and cost-effective screening tool to discriminate between Paw San rice cultivated in the Shwe Bo and Ayeyarwady regions of Myanmar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
野性的香寒完成签到,获得积分10
刚刚
果粒红豆豆完成签到 ,获得积分10
2秒前
3秒前
5秒前
科研通AI2S应助朕是大皇帝采纳,获得10
6秒前
科研小白发布了新的文献求助10
9秒前
11秒前
12秒前
酷波er应助van_采纳,获得10
13秒前
yuni123完成签到,获得积分10
13秒前
15秒前
luobo发布了新的文献求助10
15秒前
852应助心灵美绯采纳,获得10
16秒前
qianyu完成签到,获得积分10
16秒前
17秒前
爆米花应助VI采纳,获得10
17秒前
17秒前
正直夜安发布了新的文献求助10
18秒前
海阔天空完成签到,获得积分10
18秒前
诚心的金毛完成签到,获得积分10
19秒前
20秒前
马界泡泡发布了新的文献求助10
21秒前
23秒前
23秒前
俞渝完成签到,获得积分20
24秒前
24秒前
科研通AI2S应助菠萝采纳,获得10
26秒前
27秒前
小周不吃粥完成签到 ,获得积分10
28秒前
科研通AI2S应助wangzhao采纳,获得10
28秒前
钦川发布了新的文献求助10
28秒前
28秒前
zengyl完成签到,获得积分10
29秒前
脑洞疼应助喜东东采纳,获得30
30秒前
耶耶完成签到 ,获得积分20
30秒前
31秒前
33秒前
山山而川发布了新的文献求助20
33秒前
33秒前
34秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226