Geographical discrimination of Paw San rice cultivated in different regions of Myanmar using near-infrared spectroscopy, headspace-gas chromatography-ion mobility spectrometry and chemometrics

化学 化学计量学 离子迁移光谱法 质谱法 色谱法 判别式 计算机科学 人工智能
作者
Saw Thantar,Alīna Mihailova,Marivil Islam,Florence Maxwell,Islam Hamed,Christina Vlachou,Simon D. Kelly
出处
期刊:Talanta [Elsevier]
卷期号:: 125910-125910 被引量:1
标识
DOI:10.1016/j.talanta.2024.125910
摘要

Paw San rice, also known as "Myanmar pearl rice", is considered the highest quality rice in Myanmar. There are considerable differences in terms of the premium commercial value of Paw San rice, which is an incentive for fraud, e.g. adulteration with cheaper rice varieties or mislabelling its geographical origin. Shwe Bo District is one of the most popular rice growing areas in the Sagaing region of Myanmar which produces the most valued and highly priced Paw San rice (Shwe Bo Paw San). The verification of the geographical origin of Paw San rice is not readily undertaken in the rice supply chain because the existing analytical approaches are time-consuming and expensive. Therefore, there is a need for rapid, robust and cost-effective analytical techniques for monitoring the authenticity and geographical origin of Paw San rice. In this 4-year study, two rapid screening techniques, Fourier-transform near-infrared (FT-NIR) spectroscopy and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), coupled with chemometric modelling, were applied and compared for the regional differentiation of Paw San rice. In addition, low-level fusion of the FT-NIR and HS-GC-IMS data was performed and its effect on the discriminative power of the chemometric models was assessed. Extensive model validation, including the validation using independent samples from a different production year, was performed. Furthermore, the effect of the sample preparation technique (grinding versus no sample preparation) on the performance of the discriminative model, obtained with FT-NIR spectral data, was assessed. The study discusses the suitability of FT-NIR spectroscopy, HS-GC-IMS and the combination of both approaches for rapid determination of the geographical origin of Paw San rice. The results demonstrated the excellent potential of the FT-NIR spectroscopy as well as HS-GC-IMS for the differentiation of Paw San rice cultivated in two distinct geographical regions. The OPLS-DA model, built using FT-NIR data of rice from 3 production years, achieved 96.67% total correct classification rate of an independent dataset from the 4th production year. The DD-SIMCA model, built using FT-NIR data of ground rice, also demonstrated the highest performance: 94% sensitivity and 97% specificity. This study has demonstrated that FT-NIR spectroscopy can be used as an accessible, rapid and cost-effective screening tool to discriminate between Paw San rice cultivated in the Shwe Bo and Ayeyarwady regions of Myanmar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术大白完成签到 ,获得积分10
1秒前
1秒前
SYT完成签到,获得积分10
2秒前
3秒前
5秒前
5秒前
5秒前
6秒前
6秒前
魏伯安发布了新的文献求助10
6秒前
6秒前
zhouleiwang完成签到,获得积分10
7秒前
李爱国应助aiming采纳,获得10
8秒前
无奈傲菡完成签到,获得积分10
9秒前
TT发布了新的文献求助10
9秒前
啦啦啦发布了新的文献求助10
10秒前
sun发布了新的文献求助10
11秒前
荣荣完成签到,获得积分10
11秒前
12秒前
小安完成签到,获得积分10
13秒前
Spencer完成签到 ,获得积分10
13秒前
PengHu完成签到,获得积分10
14秒前
14秒前
16秒前
18秒前
18秒前
18秒前
ywang发布了新的文献求助10
19秒前
失眠虔纹完成签到,获得积分10
19秒前
斯文败类应助nextconnie采纳,获得10
19秒前
药学牛马发布了新的文献求助10
23秒前
23秒前
24秒前
27秒前
张无缺完成签到,获得积分10
30秒前
32秒前
CodeCraft应助MES采纳,获得10
33秒前
笨笨乘风完成签到,获得积分10
34秒前
田様应助axunQAQ采纳,获得10
36秒前
完美秋烟发布了新的文献求助10
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849