A deep ensemble medical image segmentation with novel sampling method and loss function

计算机科学 分割 人工智能 深度学习 任务(项目管理) 机器学习 图像分割 模式识别(心理学) 采样(信号处理) 计算机视觉 滤波器(信号处理) 经济 管理
作者
SeyedEhsan Roshan,Jafar Tanha,Mahdi Zarrin,Alireza Fakhim Babaei,Haniyeh Nikkhah,Zahra Jafari
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:172: 108305-108305 被引量:10
标识
DOI:10.1016/j.compbiomed.2024.108305
摘要

Medical image segmentation is a critical task in computer vision because of facilitating precise identification of regions of interest in medical images. This task plays an important role in disease diagnosis and treatment planning. In recent years, deep learning algorithms have exhibited remarkable performance in this domain. However, it is important to note that there are still unresolved issues, including challenges related to class imbalance and achieving higher levels of accuracy. Considering the challenges, we propose a novel approach to the semantic segmentation of medical images. In this study, a new sampling method to handle class imbalance in the medical datasets is proposed that ensures a comprehensive understanding of both abnormal tissues and background characteristics. Additionally, we propose a novel loss function inspired by exponential loss, which operates at the pixel level. To enhance segmentation performance further, we present an ensemble model comprising two UNet models with ResNet backbone. The initial model is trained on the primary dataset, while the second model is trained on the dataset obtained through our sampling method. The predictions of both models are combined using an ensemble model. We have assessed the effectiveness of our approach using three publicly available datasets: Kvasir-SEG, FLAIR MRI Low-Grade Glioma (LGG), and ISIC 2018 datasets. In our evaluation, we have compared the performance of our loss function against four different loss functions. Furthermore, we have showcased the excellence of our approach by comparing it with various state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗梨发布了新的文献求助10
3秒前
请叫我风吹麦浪完成签到,获得积分0
5秒前
怡萱完成签到,获得积分10
6秒前
6秒前
希卡利是光完成签到,获得积分10
7秒前
顺心的惜蕊完成签到 ,获得积分10
11秒前
青苔完成签到,获得积分10
11秒前
14秒前
爱学习的瑞瑞子完成签到 ,获得积分10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
iNk应助科研通管家采纳,获得20
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
徐国发发布了新的文献求助10
17秒前
19秒前
小二郎应助11采纳,获得10
19秒前
科研通AI2S应助liz采纳,获得10
20秒前
科研通AI5应助IRONY采纳,获得10
21秒前
25秒前
26秒前
28秒前
28秒前
嘉幸的发布了新的文献求助10
28秒前
徐国发完成签到,获得积分10
28秒前
29秒前
陌陌发布了新的文献求助30
30秒前
在水一方应助nihao采纳,获得10
32秒前
32秒前
IRONY发布了新的文献求助10
33秒前
33秒前
35秒前
杨洋发布了新的文献求助10
36秒前
高兴123发布了新的文献求助30
37秒前
yang发布了新的文献求助10
38秒前
YY完成签到,获得积分10
38秒前
星辰大海应助健壮豌豆采纳,获得10
40秒前
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673458
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784159
捐赠科研通 2939678
什么是DOI,文献DOI怎么找? 1611198
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290