Methodology and application of digital twin-driven diesel engine fault diagnosis and virtual fault model acquisition

计算机科学 断层(地质) 柴油机 断层模型 数据挖掘 汽车工程 工程类 地震学 地质学 电子线路 电气工程
作者
Yaqing Bo,Han Wu,Weifan Che,Zeyu Zhang,Xiangrong Li,Leonid Myagkov
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:131: 107853-107853 被引量:1
标识
DOI:10.1016/j.engappai.2024.107853
摘要

Digital real-time fault diagnosis is an effective way to ensure the reliable long-term operation of the diesel engine, but there is still a lack of systematic methods with high integrity and practicability. Therefore, a digital twin-driven diesel engine fault diagnosis method based on the combination of the classification algorithm and the optimization algorithm is proposed and a case study of fuel injection system fault diagnosis is used to illustrate and verify the proposed method. This method closely links the physical system, virtual model, database, and diagnosis system through data transmission and the diagnostic process consists of three parts: classification, diagnosis, and decision. The fault classification part can preliminarily lock the possible types and degrees of faults, and point out the key classification features for each fault type by using classification algorithms such as Random Forest. The fault diagnosis part can diagnose and reproduce the diesel engine faults by using an optimization-simulation joint calculation model, where the virtual model variables and optimization algorithm are determined according to the possible fault types, and the optimization target depends on the importance of classification features. Then the maintenance decision can be made according to the fault detailed information. The proposed method reduces the requirement of covering the fault degree of the database, and the obtained fault model provides the possibility for subsequent online optimization and also facilitates the development of intelligent engine management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
123完成签到,获得积分10
2秒前
善良香岚发布了新的文献求助10
2秒前
3秒前
3秒前
444完成签到,获得积分10
3秒前
任一发布了新的文献求助30
3秒前
莉莉发布了新的文献求助10
4秒前
Zoe发布了新的文献求助10
4秒前
Hover完成签到,获得积分10
4秒前
自然的茉莉完成签到,获得积分10
5秒前
5秒前
Mandy完成签到,获得积分10
5秒前
6秒前
脑洞疼应助qaq采纳,获得10
6秒前
世界尽头发布了新的文献求助10
6秒前
小二郎应助科研民工采纳,获得10
6秒前
7秒前
无奈满天发布了新的文献求助10
7秒前
8秒前
MADKAI发布了新的文献求助10
8秒前
8秒前
贪玩丸子完成签到,获得积分10
8秒前
神勇的雅香应助liutaili采纳,获得10
9秒前
KSGGS完成签到,获得积分10
9秒前
YANG关注了科研通微信公众号
9秒前
10秒前
10秒前
10秒前
99发布了新的文献求助10
11秒前
11秒前
科研通AI5应助qi采纳,获得10
11秒前
乐乐发布了新的文献求助10
12秒前
铸一字错发布了新的文献求助10
12秒前
受伤书文完成签到,获得积分10
13秒前
Yvonne发布了新的文献求助10
13秒前
13秒前
温柔的十三完成签到,获得积分10
13秒前
Ll发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759