Methodology and application of digital twin-driven diesel engine fault diagnosis and virtual fault model acquisition

计算机科学 断层(地质) 柴油机 断层模型 数据挖掘 汽车工程 工程类 地震学 地质学 电子线路 电气工程
作者
Yaqing Bo,Han Wu,Weifan Che,Zeyu Zhang,Xiangrong Li,Leonid Myagkov
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:131: 107853-107853 被引量:1
标识
DOI:10.1016/j.engappai.2024.107853
摘要

Digital real-time fault diagnosis is an effective way to ensure the reliable long-term operation of the diesel engine, but there is still a lack of systematic methods with high integrity and practicability. Therefore, a digital twin-driven diesel engine fault diagnosis method based on the combination of the classification algorithm and the optimization algorithm is proposed and a case study of fuel injection system fault diagnosis is used to illustrate and verify the proposed method. This method closely links the physical system, virtual model, database, and diagnosis system through data transmission and the diagnostic process consists of three parts: classification, diagnosis, and decision. The fault classification part can preliminarily lock the possible types and degrees of faults, and point out the key classification features for each fault type by using classification algorithms such as Random Forest. The fault diagnosis part can diagnose and reproduce the diesel engine faults by using an optimization-simulation joint calculation model, where the virtual model variables and optimization algorithm are determined according to the possible fault types, and the optimization target depends on the importance of classification features. Then the maintenance decision can be made according to the fault detailed information. The proposed method reduces the requirement of covering the fault degree of the database, and the obtained fault model provides the possibility for subsequent online optimization and also facilitates the development of intelligent engine management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助积极的夏天采纳,获得10
6秒前
7秒前
Hello应助坚强的笑天采纳,获得30
7秒前
阿泽完成签到,获得积分10
7秒前
汉堡包应助机智张采纳,获得10
12秒前
博修发布了新的文献求助10
12秒前
小蘑菇应助Zhang采纳,获得10
13秒前
思源应助Raki采纳,获得10
13秒前
小酒窝窝窝~完成签到,获得积分10
14秒前
orixero应助Denghui采纳,获得10
16秒前
Akim应助激昂的背包采纳,获得10
18秒前
18秒前
ks完成签到,获得积分10
20秒前
23秒前
ShaLi123发布了新的文献求助10
24秒前
Pull发布了新的文献求助10
24秒前
科研通AI2S应助快乐小子采纳,获得10
25秒前
微笑枫完成签到,获得积分10
25秒前
高高紫翠发布了新的文献求助10
25秒前
26秒前
谨慎惋庭发布了新的文献求助10
26秒前
28秒前
淡然平灵应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
ccm应助科研通管家采纳,获得10
28秒前
28秒前
乐乐应助科研通管家采纳,获得10
28秒前
Orange应助科研通管家采纳,获得10
28秒前
大个应助科研通管家采纳,获得10
29秒前
材1完成签到 ,获得积分10
29秒前
淡然平灵应助科研通管家采纳,获得10
29秒前
FashionBoy应助科研通管家采纳,获得10
29秒前
彭于晏应助科研通管家采纳,获得10
29秒前
Orange应助科研通管家采纳,获得10
29秒前
29秒前
Denghui发布了新的文献求助10
31秒前
科研通AI2S应助tz采纳,获得10
31秒前
amupf发布了新的文献求助10
32秒前
学术趴菜完成签到,获得积分10
34秒前
35秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343326
求助须知:如何正确求助?哪些是违规求助? 2970407
关于积分的说明 8643896
捐赠科研通 2650477
什么是DOI,文献DOI怎么找? 1451290
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661492