已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiscale Deep Attention Q Network: A New Deep Reinforcement Learning Method for Imbalanced Fault Diagnosis in Gearboxes

人工智能 强化学习 计算机科学 断层(地质) 判别式 卷积神经网络 深度学习 机器学习 一般化 特征提取 特征(语言学) 人工神经网络 卷积(计算机科学) 过程(计算) 特征学习 马尔可夫决策过程 模式识别(心理学) 马尔可夫过程 数学 统计 地震学 哲学 数学分析 地质学 操作系统 语言学
作者
Hui Wang,Zheng Zhou,Liuyang Zhang,Ruqiang Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:17
标识
DOI:10.1109/tim.2023.3338664
摘要

Ensuring the safety of mechanical driving systems relies heavily on accurate gearbox fault diagnosis. However, the presence of actual multiworking conditions and uneven sample distribution makes fault diagnosis in gearboxes more challenging. Although intelligent fault diagnosis (IFD) employing convolutional neural networks (CNNs) has shown promising results, they often require strong feedback learning and experienced adjustment of hyperparameters for different tasks. In this article, a novel approach called multiscale deep attention Q network (MDAQN) is proposed for imbalanced gearbox fault diagnosis from a deep reinforcement learning (DRL) perspective. An imbalanced classification Markov decision process (ICMDP) is introduced that considers interclass deviation, serving as an environment simulation to enhance classification policy learning under data imbalance. In addition, a new multiscale attention convolution network is designed as the agent structure of the deep Q network (DQN) algorithm, thereby improving the discriminative feature learning ability under complex running conditions. By employing weak feedback interaction from DRL, the diagnostic model is trained to enable imbalanced gearbox fault diagnosis effectively. Experimental results on three gearbox imbalanced datasets demonstrate that MDAQN exhibits superior feature extraction ability and generalization, achieving an accuracy of over 99.0% when compared to multiple existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助个性冰海采纳,获得10
5秒前
7秒前
飘逸的语琴关注了科研通微信公众号
13秒前
13秒前
14秒前
15秒前
15秒前
个性冰海发布了新的文献求助10
19秒前
19秒前
蓝色的鱼发布了新的文献求助10
20秒前
dd发布了新的文献求助10
20秒前
jml完成签到,获得积分10
22秒前
cong完成签到 ,获得积分10
24秒前
虚幻笑晴发布了新的文献求助10
27秒前
LMX完成签到 ,获得积分10
27秒前
个性冰海完成签到,获得积分20
29秒前
01关闭了01文献求助
30秒前
牛初辰完成签到 ,获得积分10
33秒前
35秒前
蓝色的鱼完成签到,获得积分10
36秒前
高高亦竹完成签到,获得积分10
37秒前
41秒前
虚幻笑晴发布了新的文献求助10
42秒前
小雨点Logan完成签到,获得积分10
42秒前
谦让的含海应助dd采纳,获得10
45秒前
哲别发布了新的文献求助10
46秒前
50秒前
默默善愁发布了新的文献求助10
54秒前
顾矜应助默默善愁采纳,获得10
1分钟前
1分钟前
闪闪的梦槐完成签到 ,获得积分10
1分钟前
xiaoya927217发布了新的文献求助10
1分钟前
1分钟前
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
myg123完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458782
求助须知:如何正确求助?哪些是违规求助? 4564757
关于积分的说明 14296896
捐赠科研通 4489835
什么是DOI,文献DOI怎么找? 2459317
邀请新用户注册赠送积分活动 1449038
关于科研通互助平台的介绍 1424524