亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepSurf2.0: A Deep Learning Approach for Predicting Interactions of B Cell Receptors with Antigens

断点群集区域 B细胞受体 抗原 生物 计算生物学 表位 生物信息学 蛋白质数据库 B细胞 抗体 细胞生物学 受体 免疫学 遗传学 生物化学 基因
作者
Angelos-Michael Papadopoulos,Anastasia Iatrou,Απόστολος Αξενόπουλος,Andreas Agathangelidis,Κώστας Σταματόπουλος,Petros Daras
出处
期刊:Blood [American Society of Hematology]
卷期号:142 (Supplement 1): 3930-3930 被引量:3
标识
DOI:10.1182/blood-2023-188537
摘要

The B cell receptor immunoglobulin (BcR IG) is a unique molecular identity for each B cell clone, underpinning interactions with foreign and (auto)antigens that eventually affect clonal behavior. BcR signaling is crucial for the homeostasis of B cells, affecting all aspects of their physiology including cell activation, proliferation, differentiation and apoptosis. Moreover, it is highly relevant for pathological conditions implicating B cells, e.g. B cell lymphomas and autoimmune disorders. Structural analysis of the BcR IG and its cognate antigenic epitopes is vital in elucidating the mechanisms of BcR-antigen interactions. While analyzing actual protein crystals would be ideal, the crystallographic procedures are notoriously labor-intensive and challenging. Hence, we pivot to an in-silico approach, utilizing 3D analysis of BcR-antigen interactions. Confronted with the inherent variability of BcRs and the arduous nature of experimental analyses, we present a cutting-edge solution: DeepSurf2.0. This innovative computational tool leverages deep learning algorithms to predict Protein-Protein Interactions (PPI) and more specifically BcR-antigen interactions, creating a foundation for fast and accurate protein-protein docking. DeepSurf2.0, specifically tailored for the 3D structures of BcR IG and associated antigens, harnesses the power of deep learning to predict PPI: therefore, a carefully curated dataset is of paramount importance. To achieve the latter, we took advantage of SAbDab, a database containing all the antibody structures available in the Protein Data Bank (PDB), annotated and presented in a consistent fashion. We refined the SAbDab dataset by applying the following filtering steps: (i) we retained only complete BcR IG, i.e. those with available heavy and light chains, (ii) we preserved only one biological assembly from multimeric protein complexes, (iii) we excluded BcRs without associated antigens, and (iv) we constructed each BcR-antigen pair to consist of three chains (one each heavy and light for the BcR and one for the antigen). Through these exacting measures, we created a comprehensive collection of 10,543 BcR-antigen pairs. DeepSurf2.0 was evaluated using two metrics: DCA (Distance between Predicted binding site center and nearest antigen Atom) and OVR (Intersection of real and predicted binding sites divided by their union). A binding site prediction was considered as a hit if DCA < 4 Å. For training purposes, we utilized 9,440 BcR-antigen pairs to optimize DeepSurf2.0. The model was then evaluated on a separate test set of 1,103 BcR-antigen pairs. In this evaluation, DeepSurf2.0 achieved a DCA rate of 33%, which means that a hit was detected in 364 out of 1,103 cases. To measure the quality of these predictions, we assessed the OVR metric that resulted in a rate of 22%. To the best of our knowledge, there are no relevant methods that have been tested in a similar dataset. Existing state-of-the-art PPI prediction approaches achieve similar scores in DCA and OVR; however, the utilized datasets consisted of single chains in receptor and ligand. In contrast, our model incorporates a more complex two-chain receptor paradigm, which is a more challenging task but closer to the reality of BcR-antigen interactions. The aforementioned results not only facilitate understanding molecular interactions but also provide valuable insights into potential BcR docking areas for antigens. This ability to predict and locate the most probable interaction sites has immediate practical implications, significantly expediting the docking process by negating the need for time-consuming blind docking. Since our results are not directly comparable with those of the current state-of-the-art methods, our dataset will be provided publicly as a benchmark to evaluate similar methods in two-chain receptor cases. In conclusion, DeepSurf2.0 serves as a foundation for enabling subsequent docking algorithms to target the predicted interaction binding surface rather than the entire protein structure. This advancement underscores the transformative potential of deep learning within the realm of (immuno)hematology, holding the potential to provide novel insights into the pathogenesis and progression of B cell-related disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研帽发布了新的文献求助10
1秒前
枫叶完成签到 ,获得积分10
3秒前
奔跑石小猛完成签到,获得积分10
3秒前
纸鹤发布了新的文献求助10
6秒前
liz完成签到,获得积分10
16秒前
小花小宝和阿飞完成签到 ,获得积分10
24秒前
27秒前
科研通AI6应助盛夏如花采纳,获得10
28秒前
34秒前
39秒前
53秒前
55155255完成签到,获得积分10
54秒前
慕青应助明亮紫易采纳,获得10
56秒前
纸鹤发布了新的文献求助10
56秒前
吱吱吱吱发布了新的文献求助10
57秒前
小橘子不小完成签到,获得积分10
1分钟前
Ruby完成签到,获得积分10
1分钟前
1分钟前
zhuyi_6695发布了新的文献求助10
1分钟前
kei完成签到 ,获得积分10
1分钟前
吃了吃了完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
勤恳依霜发布了新的文献求助10
1分钟前
hhhhhh应助科研通管家采纳,获得50
1分钟前
xiaohardy完成签到,获得积分10
1分钟前
勤恳依霜完成签到,获得积分10
1分钟前
英俊的铭应助Jack采纳,获得10
1分钟前
盛夏如花发布了新的文献求助10
1分钟前
budingman发布了新的文献求助10
1分钟前
Chen完成签到 ,获得积分10
1分钟前
健壮傲之完成签到 ,获得积分10
1分钟前
纸鹤发布了新的文献求助80
1分钟前
2分钟前
sunrise完成签到,获得积分10
2分钟前
汉堡包应助科研帽采纳,获得10
2分钟前
孙颖完成签到 ,获得积分10
2分钟前
Jack发布了新的文献求助10
2分钟前
2分钟前
Always发布了新的文献求助10
2分钟前
Steve完成签到 ,获得积分10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644525
求助须知:如何正确求助?哪些是违规求助? 4764376
关于积分的说明 15025234
捐赠科研通 4802924
什么是DOI,文献DOI怎么找? 2567703
邀请新用户注册赠送积分活动 1525363
关于科研通互助平台的介绍 1484826