DeepSurf2.0: A Deep Learning Approach for Predicting Interactions of B Cell Receptors with Antigens

断点群集区域 B细胞受体 抗原 生物 计算生物学 表位 生物信息学 蛋白质数据库 B细胞 抗体 细胞生物学 受体 免疫学 遗传学 生物化学 基因
作者
Angelos-Michael Papadopoulos,Anastasia Iatrou,Απόστολος Αξενόπουλος,Andreas Agathangelidis,Κώστας Σταματόπουλος,Petros Daras
出处
期刊:Blood [Elsevier BV]
卷期号:142 (Supplement 1): 3930-3930
标识
DOI:10.1182/blood-2023-188537
摘要

The B cell receptor immunoglobulin (BcR IG) is a unique molecular identity for each B cell clone, underpinning interactions with foreign and (auto)antigens that eventually affect clonal behavior. BcR signaling is crucial for the homeostasis of B cells, affecting all aspects of their physiology including cell activation, proliferation, differentiation and apoptosis. Moreover, it is highly relevant for pathological conditions implicating B cells, e.g. B cell lymphomas and autoimmune disorders. Structural analysis of the BcR IG and its cognate antigenic epitopes is vital in elucidating the mechanisms of BcR-antigen interactions. While analyzing actual protein crystals would be ideal, the crystallographic procedures are notoriously labor-intensive and challenging. Hence, we pivot to an in-silico approach, utilizing 3D analysis of BcR-antigen interactions. Confronted with the inherent variability of BcRs and the arduous nature of experimental analyses, we present a cutting-edge solution: DeepSurf2.0. This innovative computational tool leverages deep learning algorithms to predict Protein-Protein Interactions (PPI) and more specifically BcR-antigen interactions, creating a foundation for fast and accurate protein-protein docking. DeepSurf2.0, specifically tailored for the 3D structures of BcR IG and associated antigens, harnesses the power of deep learning to predict PPI: therefore, a carefully curated dataset is of paramount importance. To achieve the latter, we took advantage of SAbDab, a database containing all the antibody structures available in the Protein Data Bank (PDB), annotated and presented in a consistent fashion. We refined the SAbDab dataset by applying the following filtering steps: (i) we retained only complete BcR IG, i.e. those with available heavy and light chains, (ii) we preserved only one biological assembly from multimeric protein complexes, (iii) we excluded BcRs without associated antigens, and (iv) we constructed each BcR-antigen pair to consist of three chains (one each heavy and light for the BcR and one for the antigen). Through these exacting measures, we created a comprehensive collection of 10,543 BcR-antigen pairs. DeepSurf2.0 was evaluated using two metrics: DCA (Distance between Predicted binding site center and nearest antigen Atom) and OVR (Intersection of real and predicted binding sites divided by their union). A binding site prediction was considered as a hit if DCA < 4 Å. For training purposes, we utilized 9,440 BcR-antigen pairs to optimize DeepSurf2.0. The model was then evaluated on a separate test set of 1,103 BcR-antigen pairs. In this evaluation, DeepSurf2.0 achieved a DCA rate of 33%, which means that a hit was detected in 364 out of 1,103 cases. To measure the quality of these predictions, we assessed the OVR metric that resulted in a rate of 22%. To the best of our knowledge, there are no relevant methods that have been tested in a similar dataset. Existing state-of-the-art PPI prediction approaches achieve similar scores in DCA and OVR; however, the utilized datasets consisted of single chains in receptor and ligand. In contrast, our model incorporates a more complex two-chain receptor paradigm, which is a more challenging task but closer to the reality of BcR-antigen interactions. The aforementioned results not only facilitate understanding molecular interactions but also provide valuable insights into potential BcR docking areas for antigens. This ability to predict and locate the most probable interaction sites has immediate practical implications, significantly expediting the docking process by negating the need for time-consuming blind docking. Since our results are not directly comparable with those of the current state-of-the-art methods, our dataset will be provided publicly as a benchmark to evaluate similar methods in two-chain receptor cases. In conclusion, DeepSurf2.0 serves as a foundation for enabling subsequent docking algorithms to target the predicted interaction binding surface rather than the entire protein structure. This advancement underscores the transformative potential of deep learning within the realm of (immuno)hematology, holding the potential to provide novel insights into the pathogenesis and progression of B cell-related disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZLQ完成签到,获得积分10
刚刚
爱在深秋完成签到,获得积分10
刚刚
忘崽子小拳头完成签到,获得积分10
刚刚
霡霂完成签到,获得积分10
1秒前
打工人一枚完成签到,获得积分10
1秒前
蛇從革发布了新的文献求助30
1秒前
骑着火车撵火箭完成签到,获得积分10
2秒前
xinmindeng发布了新的文献求助10
2秒前
读者完成签到,获得积分10
2秒前
aki空中飞跃完成签到,获得积分10
3秒前
3秒前
3123939715完成签到,获得积分10
4秒前
wjy完成签到,获得积分10
4秒前
考研小白完成签到,获得积分10
4秒前
想发一篇贾克斯完成签到,获得积分10
4秒前
只只完成签到,获得积分10
4秒前
司空元正完成签到 ,获得积分10
5秒前
5秒前
桑尼号完成签到,获得积分10
5秒前
LFF完成签到,获得积分10
6秒前
6秒前
Ava应助辛勤采柳采纳,获得10
7秒前
张甜完成签到,获得积分10
7秒前
小二郎应助整齐千柳采纳,获得10
7秒前
7秒前
qu完成签到 ,获得积分20
8秒前
小马甲应助66135采纳,获得10
10秒前
小陀螺完成签到,获得积分10
10秒前
11秒前
李佳完成签到,获得积分10
11秒前
说书人完成签到,获得积分10
11秒前
12秒前
jk完成签到,获得积分10
12秒前
哈哈哈6056完成签到,获得积分10
12秒前
程公子完成签到,获得积分10
12秒前
Ava应助Joy采纳,获得10
13秒前
13秒前
幽默的机器猫完成签到,获得积分10
14秒前
黄黄完成签到,获得积分10
14秒前
虚幻沛文完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080063
求助须知:如何正确求助?哪些是违规求助? 4298076
关于积分的说明 13390059
捐赠科研通 4121584
什么是DOI,文献DOI怎么找? 2257188
邀请新用户注册赠送积分活动 1261474
关于科研通互助平台的介绍 1195636