已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DeepSurf2.0: A Deep Learning Approach for Predicting Interactions of B Cell Receptors with Antigens

断点群集区域 B细胞受体 抗原 生物 计算生物学 表位 生物信息学 蛋白质数据库 B细胞 抗体 细胞生物学 受体 免疫学 遗传学 生物化学 基因
作者
Angelos-Michael Papadopoulos,Anastasia Iatrou,Απόστολος Αξενόπουλος,Andreas Agathangelidis,Κώστας Σταματόπουλος,Petros Daras
出处
期刊:Blood [American Society of Hematology]
卷期号:142 (Supplement 1): 3930-3930 被引量:3
标识
DOI:10.1182/blood-2023-188537
摘要

The B cell receptor immunoglobulin (BcR IG) is a unique molecular identity for each B cell clone, underpinning interactions with foreign and (auto)antigens that eventually affect clonal behavior. BcR signaling is crucial for the homeostasis of B cells, affecting all aspects of their physiology including cell activation, proliferation, differentiation and apoptosis. Moreover, it is highly relevant for pathological conditions implicating B cells, e.g. B cell lymphomas and autoimmune disorders. Structural analysis of the BcR IG and its cognate antigenic epitopes is vital in elucidating the mechanisms of BcR-antigen interactions. While analyzing actual protein crystals would be ideal, the crystallographic procedures are notoriously labor-intensive and challenging. Hence, we pivot to an in-silico approach, utilizing 3D analysis of BcR-antigen interactions. Confronted with the inherent variability of BcRs and the arduous nature of experimental analyses, we present a cutting-edge solution: DeepSurf2.0. This innovative computational tool leverages deep learning algorithms to predict Protein-Protein Interactions (PPI) and more specifically BcR-antigen interactions, creating a foundation for fast and accurate protein-protein docking. DeepSurf2.0, specifically tailored for the 3D structures of BcR IG and associated antigens, harnesses the power of deep learning to predict PPI: therefore, a carefully curated dataset is of paramount importance. To achieve the latter, we took advantage of SAbDab, a database containing all the antibody structures available in the Protein Data Bank (PDB), annotated and presented in a consistent fashion. We refined the SAbDab dataset by applying the following filtering steps: (i) we retained only complete BcR IG, i.e. those with available heavy and light chains, (ii) we preserved only one biological assembly from multimeric protein complexes, (iii) we excluded BcRs without associated antigens, and (iv) we constructed each BcR-antigen pair to consist of three chains (one each heavy and light for the BcR and one for the antigen). Through these exacting measures, we created a comprehensive collection of 10,543 BcR-antigen pairs. DeepSurf2.0 was evaluated using two metrics: DCA (Distance between Predicted binding site center and nearest antigen Atom) and OVR (Intersection of real and predicted binding sites divided by their union). A binding site prediction was considered as a hit if DCA < 4 Å. For training purposes, we utilized 9,440 BcR-antigen pairs to optimize DeepSurf2.0. The model was then evaluated on a separate test set of 1,103 BcR-antigen pairs. In this evaluation, DeepSurf2.0 achieved a DCA rate of 33%, which means that a hit was detected in 364 out of 1,103 cases. To measure the quality of these predictions, we assessed the OVR metric that resulted in a rate of 22%. To the best of our knowledge, there are no relevant methods that have been tested in a similar dataset. Existing state-of-the-art PPI prediction approaches achieve similar scores in DCA and OVR; however, the utilized datasets consisted of single chains in receptor and ligand. In contrast, our model incorporates a more complex two-chain receptor paradigm, which is a more challenging task but closer to the reality of BcR-antigen interactions. The aforementioned results not only facilitate understanding molecular interactions but also provide valuable insights into potential BcR docking areas for antigens. This ability to predict and locate the most probable interaction sites has immediate practical implications, significantly expediting the docking process by negating the need for time-consuming blind docking. Since our results are not directly comparable with those of the current state-of-the-art methods, our dataset will be provided publicly as a benchmark to evaluate similar methods in two-chain receptor cases. In conclusion, DeepSurf2.0 serves as a foundation for enabling subsequent docking algorithms to target the predicted interaction binding surface rather than the entire protein structure. This advancement underscores the transformative potential of deep learning within the realm of (immuno)hematology, holding the potential to provide novel insights into the pathogenesis and progression of B cell-related disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伤心葫芦娃完成签到 ,获得积分10
1秒前
2秒前
星星完成签到,获得积分10
2秒前
泥泞o发布了新的文献求助10
6秒前
领导范儿应助青阳采纳,获得10
6秒前
5160完成签到,获得积分10
8秒前
乐研客完成签到,获得积分10
9秒前
11秒前
星星2完成签到,获得积分10
11秒前
FleeToMars完成签到 ,获得积分10
12秒前
小洁完成签到 ,获得积分10
12秒前
bji完成签到,获得积分10
14秒前
yige完成签到,获得积分10
15秒前
吃草草没完成签到 ,获得积分10
15秒前
17秒前
李晓萌发布了新的文献求助10
17秒前
天宇南神完成签到 ,获得积分10
17秒前
顾矜应助xxhxx采纳,获得10
17秒前
量子星尘发布了新的文献求助10
19秒前
hjc完成签到,获得积分10
22秒前
sailingluwl完成签到,获得积分10
23秒前
25秒前
Rae完成签到 ,获得积分10
27秒前
luster完成签到 ,获得积分10
27秒前
moonlight完成签到,获得积分10
28秒前
天使她男人完成签到,获得积分10
30秒前
小迷糊完成签到 ,获得积分10
30秒前
993494543完成签到,获得积分10
31秒前
32秒前
33秒前
lhq完成签到 ,获得积分10
34秒前
35秒前
Suttier完成签到 ,获得积分10
36秒前
xxhxx发布了新的文献求助10
38秒前
Yesyes完成签到,获得积分10
39秒前
舒心的草莓完成签到 ,获得积分20
39秒前
zxcv1发布了新的文献求助10
40秒前
40秒前
健康的小鸽子完成签到 ,获得积分10
42秒前
爱撒娇的妙竹完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573190
求助须知:如何正确求助?哪些是违规求助? 4659336
关于积分的说明 14724438
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524140
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704