Hierarchical Optimization Scheduling Algorithm for Logistics Transport Vehicles Based on Multi-Agent Reinforcement Learning

强化学习 计算机科学 马尔可夫决策过程 调度(生产过程) 数学优化 作业车间调度 增强学习 马尔可夫过程 人工智能 地铁列车时刻表 数学 统计 操作系统
作者
Min Zhang,Chaohong Pan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 3108-3117 被引量:3
标识
DOI:10.1109/tits.2023.3337334
摘要

How to effectively improve the cargo assembly and multi-vehicle stratified planning has become an urgent problem to be solved. In this paper, Multi-Agent Reinforcement Learning Hierarchical Optimal Scheduling Algorithm (MARLHOSA) is proposed to solve the hierarchical scheduling problem of logistics transport vehicles. We model the hierarchical scheduling problem of logistics transport vehicles as an infinite Markov decision process and set constraints to simulate the actual operating environment. To solve the Markov decision process corresponding to the economic scheduling problem of logistics transport vehicles, this paper uses the close-range strategy optimization algorithm, and uses multi-agent reinforcement learning algorithm based on the clipping mechanism to improve the loss function of the short-range strategy optimization algorithm. In addition, a distributed training architecture was designed for the training process of the close-range strategy optimization algorithm, so as to improve the speed of data collection and training speed and quality. According to a demand order put forward by the company, a path-loading collaborative optimization model was established. After solving the model, the number of vehicles dispatched by each vehicle type according to the optimal path-loading scheme of each vehicle type was determined. The simulation results show that the proposed improved distributed proximity strategy optimization algorithm can achieve the same economic performance as the numerical optimization method. Compared with the traditional algorithm, MARLHOSA can reduce the total vehicle mileage by 34.5% and increase the average loading rate of the carriage by 28.6%. The optimization effect is significant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
momo发布了新的文献求助10
2秒前
小宇子发布了新的文献求助10
2秒前
Mr兔仙森完成签到,获得积分10
3秒前
LJJ发布了新的文献求助10
4秒前
4秒前
Culto完成签到,获得积分10
5秒前
6秒前
JIE完成签到,获得积分10
6秒前
houjibofa发布了新的文献求助10
7秒前
田様应助幽默平安采纳,获得10
10秒前
可爱的函函应助刘小小123采纳,获得10
11秒前
瓣落的碎梦完成签到,获得积分0
13秒前
善学以致用应助momo采纳,获得10
14秒前
孝顺的觅风完成签到 ,获得积分10
14秒前
16秒前
刘小小123发布了新的文献求助10
19秒前
健壮的面包完成签到,获得积分10
19秒前
22秒前
孙燕应助科研界的恩希玛采纳,获得20
25秒前
26秒前
迷茫的一代完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
xingxingwang完成签到,获得积分10
29秒前
春来发布了新的文献求助30
30秒前
31秒前
31秒前
刘小小123完成签到,获得积分20
31秒前
xzy完成签到 ,获得积分10
32秒前
搜集达人应助无情向梦采纳,获得10
34秒前
阿伟1999发布了新的文献求助50
36秒前
momo发布了新的文献求助10
37秒前
li完成签到,获得积分10
38秒前
如此发布了新的文献求助10
40秒前
41秒前
赵静1234567890完成签到,获得积分10
41秒前
xxxllllll发布了新的文献求助10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
Owen应助科研通管家采纳,获得10
45秒前
乐乐应助科研通管家采纳,获得10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173