亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical Optimization Scheduling Algorithm for Logistics Transport Vehicles Based on Multi-Agent Reinforcement Learning

强化学习 计算机科学 马尔可夫决策过程 调度(生产过程) 数学优化 作业车间调度 增强学习 马尔可夫过程 人工智能 地铁列车时刻表 数学 统计 操作系统
作者
Min Zhang,Chaohong Pan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 3108-3117 被引量:3
标识
DOI:10.1109/tits.2023.3337334
摘要

How to effectively improve the cargo assembly and multi-vehicle stratified planning has become an urgent problem to be solved. In this paper, Multi-Agent Reinforcement Learning Hierarchical Optimal Scheduling Algorithm (MARLHOSA) is proposed to solve the hierarchical scheduling problem of logistics transport vehicles. We model the hierarchical scheduling problem of logistics transport vehicles as an infinite Markov decision process and set constraints to simulate the actual operating environment. To solve the Markov decision process corresponding to the economic scheduling problem of logistics transport vehicles, this paper uses the close-range strategy optimization algorithm, and uses multi-agent reinforcement learning algorithm based on the clipping mechanism to improve the loss function of the short-range strategy optimization algorithm. In addition, a distributed training architecture was designed for the training process of the close-range strategy optimization algorithm, so as to improve the speed of data collection and training speed and quality. According to a demand order put forward by the company, a path-loading collaborative optimization model was established. After solving the model, the number of vehicles dispatched by each vehicle type according to the optimal path-loading scheme of each vehicle type was determined. The simulation results show that the proposed improved distributed proximity strategy optimization algorithm can achieve the same economic performance as the numerical optimization method. Compared with the traditional algorithm, MARLHOSA can reduce the total vehicle mileage by 34.5% and increase the average loading rate of the carriage by 28.6%. The optimization effect is significant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山城小丸完成签到,获得积分10
4秒前
吴嘉俊发布了新的文献求助10
5秒前
6秒前
小丸子完成签到 ,获得积分10
7秒前
彩色橘子完成签到 ,获得积分10
8秒前
11秒前
yyf251发布了新的文献求助10
16秒前
阿金啊完成签到,获得积分10
16秒前
阿金啊发布了新的文献求助30
19秒前
cyy完成签到 ,获得积分10
27秒前
30秒前
31秒前
luang完成签到,获得积分10
33秒前
个性慕青完成签到 ,获得积分10
37秒前
丘丘完成签到,获得积分10
37秒前
RRRZZ完成签到 ,获得积分10
45秒前
习习完成签到,获得积分10
45秒前
所所应助小真白采纳,获得10
46秒前
科研通AI2S应助内向的小脑采纳,获得10
49秒前
mingli的tau发布了新的文献求助10
54秒前
科研通AI5应助LJ_scholar采纳,获得10
57秒前
1分钟前
yf完成签到,获得积分10
1分钟前
yf发布了新的文献求助10
1分钟前
七草肃完成签到,获得积分10
1分钟前
Hexagram完成签到 ,获得积分10
1分钟前
Jasper应助ceeray23采纳,获得20
1分钟前
张牧之完成签到 ,获得积分10
1分钟前
哈哈哈大赞完成签到,获得积分10
1分钟前
打打应助yf采纳,获得10
1分钟前
1分钟前
YoungJC66发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
轻松的惜芹应助3719left采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532068
关于积分的说明 11256227
捐赠科研通 3270933
什么是DOI,文献DOI怎么找? 1805123
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216