Hierarchical Optimization Scheduling Algorithm for Logistics Transport Vehicles Based on Multi-Agent Reinforcement Learning

强化学习 计算机科学 马尔可夫决策过程 调度(生产过程) 数学优化 作业车间调度 增强学习 马尔可夫过程 人工智能 地铁列车时刻表 数学 统计 操作系统
作者
Min Zhang,Chaohong Pan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 3108-3117 被引量:3
标识
DOI:10.1109/tits.2023.3337334
摘要

How to effectively improve the cargo assembly and multi-vehicle stratified planning has become an urgent problem to be solved. In this paper, Multi-Agent Reinforcement Learning Hierarchical Optimal Scheduling Algorithm (MARLHOSA) is proposed to solve the hierarchical scheduling problem of logistics transport vehicles. We model the hierarchical scheduling problem of logistics transport vehicles as an infinite Markov decision process and set constraints to simulate the actual operating environment. To solve the Markov decision process corresponding to the economic scheduling problem of logistics transport vehicles, this paper uses the close-range strategy optimization algorithm, and uses multi-agent reinforcement learning algorithm based on the clipping mechanism to improve the loss function of the short-range strategy optimization algorithm. In addition, a distributed training architecture was designed for the training process of the close-range strategy optimization algorithm, so as to improve the speed of data collection and training speed and quality. According to a demand order put forward by the company, a path-loading collaborative optimization model was established. After solving the model, the number of vehicles dispatched by each vehicle type according to the optimal path-loading scheme of each vehicle type was determined. The simulation results show that the proposed improved distributed proximity strategy optimization algorithm can achieve the same economic performance as the numerical optimization method. Compared with the traditional algorithm, MARLHOSA can reduce the total vehicle mileage by 34.5% and increase the average loading rate of the carriage by 28.6%. The optimization effect is significant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小fairy侠完成签到,获得积分10
3秒前
槑槑完成签到,获得积分10
4秒前
王王王发布了新的文献求助10
5秒前
ddd发布了新的文献求助10
9秒前
大恐龙完成签到,获得积分10
9秒前
萧瑟处应助完美的海秋采纳,获得10
11秒前
鳗鱼语薇发布了新的文献求助20
15秒前
天天快乐应助祁丶采纳,获得10
17秒前
小马哥发布了新的文献求助10
17秒前
充电宝应助远方的蓝风铃采纳,获得10
18秒前
John完成签到 ,获得积分10
19秒前
Trent完成签到,获得积分10
19秒前
完美世界应助尹静涵采纳,获得10
20秒前
20秒前
王王王完成签到,获得积分10
21秒前
24秒前
24秒前
ww发布了新的文献求助10
26秒前
忆安完成签到 ,获得积分10
27秒前
拼搏书琴完成签到 ,获得积分10
28秒前
30秒前
30秒前
双黄应助科研通管家采纳,获得10
32秒前
Akim应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
大个应助科研通管家采纳,获得10
32秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
我是老大应助科研通管家采纳,获得10
33秒前
双黄应助科研通管家采纳,获得10
33秒前
33秒前
英勇雅琴完成签到 ,获得积分10
33秒前
wenqing发布了新的文献求助10
33秒前
赖不弱完成签到 ,获得积分10
34秒前
LUO完成签到 ,获得积分10
34秒前
cfl发布了新的文献求助10
34秒前
35秒前
萧瑟处应助完美的海秋采纳,获得10
36秒前
小王同学搞学术完成签到,获得积分10
37秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265294
求助须知:如何正确求助?哪些是违规求助? 2905244
关于积分的说明 8333171
捐赠科研通 2575616
什么是DOI,文献DOI怎么找? 1399952
科研通“疑难数据库(出版商)”最低求助积分说明 654613
邀请新用户注册赠送积分活动 633471