假电容
材料科学
插层(化学)
制作
动力学
纳米技术
化学工程
物理化学
无机化学
电容
超级电容器
电极
医学
化学
物理
替代医学
病理
量子力学
工程类
作者
Danni Wu,Yuman Zhang,Zengming Man,Haiyang Zhang,Xiaolin Zhu,Jing Ding,Jianhong Xu,Ningzhong Bao,Wangyang Lü
标识
DOI:10.1002/aenm.202304404
摘要
Abstract A key challenge in flexible supercapacitor is balancing the trade‐off between high capacity and fast charging ability caused by dense structure‐induced sluggish ionic diffusion and storage dynamics. Herein, a hydrogen‐rich graphdiyne (GDY)–Ti 3 C 2 T x electrode is reported with tunable interlayer spacing, abundant active sites, and extensive charge storage nanochannels. In particular, the GDY–Ti 3 C 2 T x (12.6 wt.%) electrode has a remarkable volumetric capacitance (2296 F cm −3 at 1 A cm −3 ) and fast charging behavior (1262 F cm −3 at 50 A cm −3 ) resulting from the shortened transport pathways, enhanced ionic diffusion rate, and facilitated electrolyte mass transport. Moreover, an all‐solid‐state supercapacitor (ASSC) delivers a high volumetric energy density of 65.6 mWh cm −3 , as well as long‐term deformable cyclic stability and high capacitance retention properties under harsh conditions. Density functional theory calculations and molecular dynamic simulation demonstrate the fast electronic responsiveness of the GDY–Ti 3 C 2 T x heterostructure owning to the stronger H + electrostatic attraction, lower migration resistance, and accelerated intercalation pseudocapacitance kinetics. In situ X‐ray diffraction reveals that a stable Ti─O─C bond bridged organic–inorganic heterostructure can tolerate the repeated high‐current charge/discharge cycling process. The state‐of‐the‐art ASSC delivers multiple functional outputs and shows great potential for efficient energy supply in practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI