Spatio-Temporal Enhanced Contrastive and Contextual Learning for Weather Forecasting

计算机科学 利用 人工智能 天气预报 过程(计算) 机器学习 潜变量 构造(python库) 人工神经网络 深度学习 数值天气预报 数据挖掘 气象学 物理 计算机安全 程序设计语言 操作系统
作者
Yongshun Gong,Tiantian He,Meng Chen,Bin Wang,Liqiang Nie,Yilong Yin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (8): 4260-4274 被引量:5
标识
DOI:10.1109/tkde.2024.3362825
摘要

Weather forecasting is of great importance for human life and various real-world fields, e.g., traffic prediction, agricultural production, and tourist industry. Existing methods can be roughly divided into two categories: theory-driven (e.g., numerical weather prediction (NWP)) and data-driven methods. Theory-driven methods require a complex simulation of the physical evolution process in the atmosphere model using supercomputers, while most data-driven methods learn the underlying laws from the historical weather records via deep learning models. However, some data-driven methods simply regard all weather variables of monitoring stations as a whole and fail to more granularly exploit complex correlations across different stations, while others prefer to construct large neural networks with massive learnable parameters. To alleviate these defects, we propose a spatio-temporal contrastive self-supervision method and a generative contextual self-supervised technique to capture spatial and temporal dependencies from the station-level and variable-level, respectively. Through these well-designed self-supervised tasks, uncomplicated networks obtain strong capability to capture latent representations for weather changes with time-varying. Thereafter, an effective encoder-decoder based fine-tuning framework is proposed, consisting of three self-supervised encoders. Extensive experiments conducted on four real-world weather condition datasets demonstrate that our method outperforms the state-of-the-art models and also empirically validates the feasibility of each self-supervised task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盏盏应助tianqiang采纳,获得10
1秒前
1秒前
Orange应助包容的善斓采纳,获得10
2秒前
聪慧代芹完成签到,获得积分20
2秒前
if发布了新的文献求助10
2秒前
朴西西发布了新的文献求助10
2秒前
Cheng完成签到 ,获得积分10
3秒前
Hanluchen完成签到,获得积分10
3秒前
科研通AI6应助灵儿采纳,获得10
3秒前
4秒前
科研迪发布了新的文献求助10
4秒前
5秒前
wzy发布了新的文献求助10
5秒前
不安鱼完成签到,获得积分10
6秒前
6秒前
庄庄发布了新的文献求助10
6秒前
6秒前
SciGPT应助zain采纳,获得10
6秒前
7秒前
CodeCraft应助常丽芳采纳,获得10
7秒前
852应助无情的宛儿采纳,获得10
7秒前
7秒前
Quinee发布了新的文献求助10
8秒前
无耻之徒发布了新的文献求助10
8秒前
MR_芝欧发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
小杨发布了新的文献求助10
11秒前
Yang发布了新的文献求助20
12秒前
12秒前
852应助Danboard采纳,获得10
12秒前
12秒前
12秒前
无花果应助丫丫采纳,获得10
13秒前
13秒前
忐忑的故事完成签到,获得积分10
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914