Current Advances and Applications of Diagnostic Microfluidic Chip: A Review

纳米技术 微流控芯片 微流控 电流(流体) 炸薯条 实验室晶片 工程类 材料科学 电气工程
作者
Garima katyal,Anuj Pathak,Parul Grover,Vaibhav Sharma
出处
期刊:Current Drug Therapy [Bentham Science]
卷期号:19 (6): 694-710
标识
DOI:10.2174/0115748855269330240122100529
摘要

Background: As a developed technology, microfluidics now offers a great toolkit for handling and manipulating suspended samples, fluid samples, and particles. A regular chip is different from a microfluidic chip. A microfluidic chip is made of a series of grooves or microchannels carved on various materials. This arrangement of microchannels contained within the microfluidic chip is connected to the outside by inputs and outputs passing through the chip. Objective: This review includes the current progress in the field of microfluidic chips, their advantages and their biomedical applications in diagnosis. Methods: The various manuscripts were collected in the field of microfluidic chip that have biomedical applications from the different sources like Pubmed,Science direct and Google Scholar, out of which some were relevant and considered for the present manuscript. Results: Microfluidic channels inside the chip allow for the processing of the fluid, such as blending and physicochemical reactions. Aside from its practical, technological, and physical benefits, microscale fluidic circuits also improve researchers' capacity to do more accurate quantitative measurements while researching biological systems. Microfluidic chips, a developing type of biochip, were primarily focused on miniaturising analytical procedures, especially to enhance analyte separation. Since then, the procedures for device construction and operation have gotten much simpler. Conclusion: For bioanalytical operations, microfluidic technology has many advantages. As originally intended, a micro total analysis system might be built using microfluidic devices to integrate various functional modules (or operational units) onto a single platform. More researchers were able to design, produce, and use microfluidic devices because of increased accessibility, which quickly demonstrated the probability of wide-ranging applicability in all branches of biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21发布了新的文献求助10
2秒前
Hang发布了新的文献求助10
2秒前
3秒前
yy发布了新的文献求助10
4秒前
4秒前
4秒前
zzzzzz应助可靠的季节采纳,获得30
4秒前
叮叮当完成签到 ,获得积分10
6秒前
7秒前
7秒前
明理的喵完成签到,获得积分10
7秒前
赘婿应助耍酷思烟采纳,获得50
8秒前
8秒前
JamesPei应助满意之玉采纳,获得10
9秒前
一一发布了新的文献求助10
10秒前
10秒前
Janson完成签到,获得积分10
10秒前
yy完成签到,获得积分10
12秒前
田様应助负责玉米采纳,获得10
12秒前
12秒前
栉风沐雨发布了新的文献求助10
13秒前
英姑应助闾丘惜萱采纳,获得10
14秒前
pzf完成签到 ,获得积分10
14秒前
险胜应助石头采纳,获得10
16秒前
英姑应助一千岛采纳,获得10
16秒前
思源应助bobo采纳,获得10
17秒前
含糊的清发布了新的文献求助10
17秒前
xiaowu完成签到,获得积分10
20秒前
Lucas应助小屁孩采纳,获得10
20秒前
白兔完成签到,获得积分20
21秒前
葱葱不吃葱完成签到 ,获得积分10
21秒前
22秒前
NexusExplorer应助研友_LOK59L采纳,获得10
22秒前
23秒前
23秒前
不受伤的凡灵完成签到,获得积分10
24秒前
Orange应助chenchenchen采纳,获得10
25秒前
上官若男应助chenchenchen采纳,获得10
25秒前
bkagyin应助chenchenchen采纳,获得10
25秒前
Jasper应助chenchenchen采纳,获得30
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309624
求助须知:如何正确求助?哪些是违规求助? 2942923
关于积分的说明 8511679
捐赠科研通 2618018
什么是DOI,文献DOI怎么找? 1430760
科研通“疑难数据库(出版商)”最低求助积分说明 664249
邀请新用户注册赠送积分活动 649437