校准
传递函数
计算机科学
分段
学习迁移
滤波器(信号处理)
领域(数学分析)
投影(关系代数)
传输(计算)
人工智能
算法
统计
计算机视觉
数学
数学分析
电气工程
并行计算
工程类
作者
Zhonghao Xie,Xiaojing Chen,Jean-Michel J. -M. Roger,Shujat Ali,Guangzao Huang,Wen Shi
标识
DOI:10.1016/j.aca.2024.342404
摘要
Calibration transfer is an essential activity in analytical chemistry in order to avoid a complete recalibration. Currently, the most popular calibration transfer methods, such as piecewise direct standardization and dynamic orthogonal projection, require a certain amount of standard or reference samples to guarantee their effectiveness. To achieve higher efficiency, it is desirable to perform the transfer with as few reference samples as possible. To this end, we propose a new calibration transfer method by using a calibration database from a master instrument (source domain) and only one spectrum with known properties from a slave instrument (target domain). We first generate a counterpart of this spectrum in the source domain by a multivariate Gaussian kernel. Then, we train a filter to make the response function of the slave instrument equivalent to that of the master instrument. To avoid the need for labels from the target domain, we also propose an unsupervised way to implement our method. Compared with several state-of-the-art methods, the results on one simulated dataset and two real-world datasets demonstrate the effectiveness of our method. Traditionally, the demand for certain amounts of reference samples during calibration transfer is cumbersome. Our approach, which requires only one reference sample, makes the transfer process simple and fast. In addition, we provide an alternative for performing unsupervised calibration transfer. As such, the proposed method is a promising tool for calibration transfer.
科研通智能强力驱动
Strongly Powered by AbleSci AI