Multi-task oriented diffusion model for mortality prediction in shock patients with incomplete data

计算机科学 休克(循环) 缺少数据 数据挖掘 任务(项目管理) 机器学习 医学 内科学 经济 管理
作者
Weijie Zhao,Zihang Chen,Puguang Xie,Jinyang Liu,Siyu Hou,Liang Xu,Yuan Qiu,Dongdong Wu,Jingjing Xiao,Kunlun He
出处
期刊:Information Fusion [Elsevier]
卷期号:105: 102207-102207
标识
DOI:10.1016/j.inffus.2023.102207
摘要

Mortality prediction based on electronic medical records is crucial for treatment decisions of shock patients in the ICU. Although clinical data on such patients often contain many missing values, the multi-view property of medical data could compensate for such missing information. Traditionally, mortality prediction models are built as two-stage approaches with additional data imputation steps, leading to issues in which the local optimal model at each step may not necessarily obtain a globally optimal solution. To overcome this problem, we conducted a multi-centre study using real-world data and aimed to develop an end-to-end mortality prediction model for shock patients. A Multi-task Oriented Diffusion Model (MODM) is proposed to fill in missing values and predict mortality simultaneously. Specifically, the model incorporates label information from different tasks to guide the optimal direction and effectively reduce uncertainty in the diffusion process. In addition, we propose a self-adjusting training strategy that balances the convergence rates among different tasks. The two largest well-known ICU datasets were used in this study, where 14,278 shock patients from eICU-CRD (2018) were included in the internal experiment, and 5,310 shock patients from MIMIC-IV (2012) were used as an external test. Compared with 14 state-of-the-art methods, the proposed model achieved the best performance with an AUC of 0.7998 in mortality prediction and notably good performance in terms of RMSE (0.0058, 0.0034, 0.0030, 0.0027) and MAE (0.3959, 0.4358, 0.4975, 0.5435) at random missing rates (10%, 30%, 50%, 70%, respectively) in the data imputation stage. The experimental results indicate the superiority of the proposed end-to-end MODM algorithm in handling real-world data. We released our code at .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦成威发布了新的文献求助20
刚刚
大菠萝发布了新的文献求助10
1秒前
1秒前
德德发布了新的文献求助10
1秒前
天天快乐应助Silence采纳,获得10
2秒前
深爱不疑发布了新的文献求助200
2秒前
可爱的函函应助九川采纳,获得10
2秒前
科研通AI5应助端庄的黑米采纳,获得30
3秒前
md03393完成签到,获得积分10
3秒前
苏照杭应助snowdrift采纳,获得10
3秒前
esbd完成签到,获得积分10
4秒前
愉快之槐完成签到,获得积分10
4秒前
顺利涵菡发布了新的文献求助10
4秒前
Jenny应助拼搏思卉采纳,获得10
5秒前
5秒前
静时发布了新的文献求助10
5秒前
5秒前
JJlv完成签到,获得积分10
6秒前
6秒前
RMY完成签到 ,获得积分10
6秒前
7秒前
艺成成完成签到 ,获得积分10
7秒前
斯文败类应助大菠萝采纳,获得10
8秒前
一汁蟹完成签到,获得积分10
8秒前
jucy完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助zyh采纳,获得10
9秒前
榆木小鸟完成签到 ,获得积分10
9秒前
科研通AI5应助徐徐采纳,获得10
9秒前
10秒前
10秒前
zee完成签到 ,获得积分20
10秒前
单薄明雪完成签到,获得积分10
10秒前
11秒前
万能图书馆应助Godspeed采纳,获得10
11秒前
孟陬十一发布了新的文献求助10
11秒前
vivi猫小咪完成签到,获得积分10
11秒前
11秒前
bkagyin应助amumu采纳,获得10
12秒前
南方姑娘发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762