Multi-task oriented diffusion model for mortality prediction in shock patients with incomplete data

计算机科学 休克(循环) 缺少数据 数据挖掘 任务(项目管理) 机器学习 医学 内科学 经济 管理
作者
Weijie Zhao,Zihang Chen,Puguang Xie,Jinyang Liu,Siyu Hou,Liang Xu,Yuan Qiu,Dongdong Wu,Jingjing Xiao,Kunlun He
出处
期刊:Information Fusion [Elsevier]
卷期号:105: 102207-102207 被引量:5
标识
DOI:10.1016/j.inffus.2023.102207
摘要

Mortality prediction based on electronic medical records is crucial for treatment decisions of shock patients in the ICU. Although clinical data on such patients often contain many missing values, the multi-view property of medical data could compensate for such missing information. Traditionally, mortality prediction models are built as two-stage approaches with additional data imputation steps, leading to issues in which the local optimal model at each step may not necessarily obtain a globally optimal solution. To overcome this problem, we conducted a multi-centre study using real-world data and aimed to develop an end-to-end mortality prediction model for shock patients. A Multi-task Oriented Diffusion Model (MODM) is proposed to fill in missing values and predict mortality simultaneously. Specifically, the model incorporates label information from different tasks to guide the optimal direction and effectively reduce uncertainty in the diffusion process. In addition, we propose a self-adjusting training strategy that balances the convergence rates among different tasks. The two largest well-known ICU datasets were used in this study, where 14,278 shock patients from eICU-CRD (2018) were included in the internal experiment, and 5,310 shock patients from MIMIC-IV (2012) were used as an external test. Compared with 14 state-of-the-art methods, the proposed model achieved the best performance with an AUC of 0.7998 in mortality prediction and notably good performance in terms of RMSE (0.0058, 0.0034, 0.0030, 0.0027) and MAE (0.3959, 0.4358, 0.4975, 0.5435) at random missing rates (10%, 30%, 50%, 70%, respectively) in the data imputation stage. The experimental results indicate the superiority of the proposed end-to-end MODM algorithm in handling real-world data. We released our code at .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MY关闭了MY文献求助
刚刚
xyj完成签到,获得积分10
刚刚
NN完成签到,获得积分10
1秒前
蹦出通通完成签到,获得积分10
1秒前
1秒前
勤劳小蚂蚁完成签到,获得积分10
2秒前
段段发布了新的文献求助10
2秒前
巫马炎彬完成签到,获得积分0
2秒前
2秒前
幽默盼柳完成签到,获得积分10
3秒前
momo发布了新的文献求助10
3秒前
BioNMR完成签到,获得积分10
3秒前
ding应助Willow采纳,获得30
3秒前
赵赵发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
金金金完成签到,获得积分10
6秒前
pumpkin发布了新的文献求助30
6秒前
烟花应助暗暗搁浅采纳,获得10
6秒前
小范完成签到 ,获得积分10
6秒前
夕子爱科研完成签到,获得积分10
7秒前
yolo完成签到,获得积分10
7秒前
Jianyu发布了新的文献求助10
8秒前
研友_VZG7GZ应助喜悦的黑夜采纳,获得10
8秒前
梦幻时空发布了新的文献求助10
8秒前
9秒前
小满完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
跳跃的语柔完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5817082
求助须知:如何正确求助?哪些是违规求助? 5945082
关于积分的说明 15546233
捐赠科研通 4939264
什么是DOI,文献DOI怎么找? 2660442
邀请新用户注册赠送积分活动 1606714
关于科研通互助平台的介绍 1561625