Multi-task oriented diffusion model for mortality prediction in shock patients with incomplete data

计算机科学 休克(循环) 缺少数据 数据挖掘 任务(项目管理) 机器学习 医学 管理 内科学 经济
作者
Weijie Zhao,Zihang Chen,Puguang Xie,Jinyang Liu,Siyu Hou,Liang Xu,Yuan Qiu,Dongdong Wu,Jingjing Xiao,Kunlun He
出处
期刊:Information Fusion [Elsevier BV]
卷期号:105: 102207-102207 被引量:3
标识
DOI:10.1016/j.inffus.2023.102207
摘要

Mortality prediction based on electronic medical records is crucial for treatment decisions of shock patients in the ICU. Although clinical data on such patients often contain many missing values, the multi-view property of medical data could compensate for such missing information. Traditionally, mortality prediction models are built as two-stage approaches with additional data imputation steps, leading to issues in which the local optimal model at each step may not necessarily obtain a globally optimal solution. To overcome this problem, we conducted a multi-centre study using real-world data and aimed to develop an end-to-end mortality prediction model for shock patients. A Multi-task Oriented Diffusion Model (MODM) is proposed to fill in missing values and predict mortality simultaneously. Specifically, the model incorporates label information from different tasks to guide the optimal direction and effectively reduce uncertainty in the diffusion process. In addition, we propose a self-adjusting training strategy that balances the convergence rates among different tasks. The two largest well-known ICU datasets were used in this study, where 14,278 shock patients from eICU-CRD (2018) were included in the internal experiment, and 5,310 shock patients from MIMIC-IV (2012) were used as an external test. Compared with 14 state-of-the-art methods, the proposed model achieved the best performance with an AUC of 0.7998 in mortality prediction and notably good performance in terms of RMSE (0.0058, 0.0034, 0.0030, 0.0027) and MAE (0.3959, 0.4358, 0.4975, 0.5435) at random missing rates (10%, 30%, 50%, 70%, respectively) in the data imputation stage. The experimental results indicate the superiority of the proposed end-to-end MODM algorithm in handling real-world data. We released our code at .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助yy采纳,获得10
刚刚
xjx发布了新的文献求助10
刚刚
最佳完成签到 ,获得积分10
刚刚
英姑应助冬季去看雨采纳,获得10
1秒前
马玲完成签到,获得积分10
1秒前
1秒前
pp‘s完成签到,获得积分10
1秒前
lsc发布了新的文献求助10
2秒前
3秒前
重要达发布了新的文献求助10
3秒前
zfm发布了新的文献求助10
3秒前
xjcy给zj的求助进行了留言
3秒前
zhuzihao发布了新的文献求助10
3秒前
xjcy应助落后爆米花采纳,获得10
3秒前
自然的箴发布了新的文献求助10
3秒前
LLL发布了新的文献求助10
4秒前
4秒前
央央完成签到,获得积分10
4秒前
沈雨琦应助youjun采纳,获得10
5秒前
白小泽完成签到,获得积分10
6秒前
科研通AI6应助马玲采纳,获得10
6秒前
白桃发布了新的文献求助10
7秒前
7秒前
vfvv完成签到,获得积分10
8秒前
yff发布了新的文献求助10
8秒前
8秒前
上官若男应助xjx采纳,获得50
8秒前
10秒前
陶醉信封发布了新的文献求助10
10秒前
饭神仙鱼完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
思源应助神勇的天问采纳,获得10
11秒前
煜琪完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
科研通AI6应助勤劳的木木采纳,获得10
12秒前
大个应助lsc采纳,获得10
12秒前
晚风发布了新的文献求助10
12秒前
龙眼完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585432
求助须知:如何正确求助?哪些是违规求助? 4002122
关于积分的说明 12389406
捐赠科研通 3678232
什么是DOI,文献DOI怎么找? 2027162
邀请新用户注册赠送积分活动 1060707
科研通“疑难数据库(出版商)”最低求助积分说明 947227