Multi-task oriented diffusion model for mortality prediction in shock patients with incomplete data

计算机科学 休克(循环) 缺少数据 数据挖掘 任务(项目管理) 机器学习 医学 内科学 经济 管理
作者
Weijie Zhao,Zihang Chen,Puguang Xie,Jinyang Liu,Siyu Hou,Liang Xu,Yuan Qiu,Dongdong Wu,Jingjing Xiao,Kunlun He
出处
期刊:Information Fusion [Elsevier]
卷期号:105: 102207-102207
标识
DOI:10.1016/j.inffus.2023.102207
摘要

Mortality prediction based on electronic medical records is crucial for treatment decisions of shock patients in the ICU. Although clinical data on such patients often contain many missing values, the multi-view property of medical data could compensate for such missing information. Traditionally, mortality prediction models are built as two-stage approaches with additional data imputation steps, leading to issues in which the local optimal model at each step may not necessarily obtain a globally optimal solution. To overcome this problem, we conducted a multi-centre study using real-world data and aimed to develop an end-to-end mortality prediction model for shock patients. A Multi-task Oriented Diffusion Model (MODM) is proposed to fill in missing values and predict mortality simultaneously. Specifically, the model incorporates label information from different tasks to guide the optimal direction and effectively reduce uncertainty in the diffusion process. In addition, we propose a self-adjusting training strategy that balances the convergence rates among different tasks. The two largest well-known ICU datasets were used in this study, where 14,278 shock patients from eICU-CRD (2018) were included in the internal experiment, and 5,310 shock patients from MIMIC-IV (2012) were used as an external test. Compared with 14 state-of-the-art methods, the proposed model achieved the best performance with an AUC of 0.7998 in mortality prediction and notably good performance in terms of RMSE (0.0058, 0.0034, 0.0030, 0.0027) and MAE (0.3959, 0.4358, 0.4975, 0.5435) at random missing rates (10%, 30%, 50%, 70%, respectively) in the data imputation stage. The experimental results indicate the superiority of the proposed end-to-end MODM algorithm in handling real-world data. We released our code at .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多看文献完成签到,获得积分10
1秒前
3秒前
3秒前
Fancy发布了新的文献求助10
3秒前
李博士发布了新的文献求助10
5秒前
5秒前
李健应助guoqingxia采纳,获得10
6秒前
6秒前
xiao白完成签到,获得积分10
7秒前
8秒前
9秒前
dzyong发布了新的文献求助10
10秒前
kyoko886发布了新的文献求助10
10秒前
10秒前
10秒前
CodeCraft应助炙热晓露采纳,获得10
11秒前
汤圆完成签到 ,获得积分10
11秒前
11秒前
123发布了新的文献求助10
11秒前
12秒前
12秒前
皇甫君浩发布了新的文献求助10
13秒前
仇道罡发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
fgh发布了新的文献求助10
14秒前
传奇3应助机智鬼神采纳,获得10
15秒前
善学以致用应助科研狗采纳,获得10
16秒前
16秒前
李爱国应助Fancy采纳,获得10
16秒前
星弟完成签到 ,获得积分10
16秒前
阿银发布了新的文献求助10
16秒前
llllll发布了新的文献求助10
16秒前
小蘑菇应助qaw采纳,获得10
16秒前
麻辣公主发布了新的文献求助10
17秒前
...发布了新的文献求助10
17秒前
云瑾给peace的求助进行了留言
18秒前
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148940
求助须知:如何正确求助?哪些是违规求助? 2800005
关于积分的说明 7837927
捐赠科研通 2457512
什么是DOI,文献DOI怎么找? 1307891
科研通“疑难数据库(出版商)”最低求助积分说明 628322
版权声明 601685