生物利用度
硒
无定形固体
硒酸盐
化学
晶体结构
结晶
化学工程
材料科学
结晶学
有机化学
生物信息学
生物
工程类
作者
Kui Li,Jing Li,Sasa Zhang,Jingrui Zhang,Qiaolin Xu,Zhongnan Xu,Yanbin Guo
标识
DOI:10.1016/j.jhazmat.2023.133287
摘要
Microorganisms play a critical role in the biogeochemical cycling of selenium, often reducing selenite/selenate to elemental selenium nanoparticles (SeNPs). These SeNPs typically exist in an amorphous structure but can transform into a trigonal allotrope. However, the crystal structural transition process and its impact on selenium bioavailability have not been well studied. To shed light on this, we prepared chemosynthetic and biogenic SeNPs and investigated the stability of their crystal structure. We found that biogenic SeNPs exhibited a highly stable amorphous structure in various conditions, such as lyophilization, washing, and laser irradiation, whereas chemosynthetic SeNPs transformed into a trigonal structure in the same conditions. Additionally, a core-shell structure was observed in biogenic SeNPs after electron beam irradiation. Further analysis revealed that biogenic SeNPs showed a coordination reaction between Se atoms and surface binding biomacromolecules, indicating that the outer layer of Se-biomacromolecules complex prevented the SeNPs from crystallizing. We also investigated the effects of SeNPs crystal structures on the bioavailability in bacteria, yeast, and plants, finding that the amorphous structure of SeNPs determined Se bioavailability. This study investigates the environmental relevance of selenium nanoparticles (SeNPs) by examining their crystal structure and bioavailability. Microorganisms convert toxic selenite to less toxic SeNPs, but the impact of SeNPs crystal structure on the bioavailability remains unclear. Chemosynthetic SeNPs easily transform into a trigonal structure, while biogenic SeNPs maintain a stable amorphous structure. A protective layer by proteins formed on biogenic SeNPs prevents crystallization. SeNPs with amorphous structure but not trigonal have Se bioavailability. These findings have significant implications for Se biogeochemistry cycling, and represents a valuable resource for developing bioremediation strategies aimed at inactivating elemental Se in Se-polluted environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI