A Convolutional Neural Network approach for image-based anomaly detection in smart agriculture

计算机科学 卷积神经网络 异常检测 人工智能 图像(数学) 异常(物理) 模式识别(心理学) 农业 人工神经网络 计算机视觉 机器学习 生态学 凝聚态物理 生物 物理
作者
José Mendoza-Bernal,Aurora González-Vidal,Antonio F. Skarmeta-Gómez
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:247: 123210-123210
标识
DOI:10.1016/j.eswa.2024.123210
摘要

The recent technological advances and their applications to agriculture provide leverage for the new paradigm of smart agriculture. Remote sensing applications can help optimize resources, making agriculture more ecological, increasing productivity and helping farmers to anticipate events that could not otherwise be avoided. Considering that losses caused by anomalies such as diseases, weeds and pests account for 20-40 % of overall agricultural productivity, a successful research effort in this area would be a breakthrough for agriculture. In this paper, we propose a methodology with which to discover and classify anomalies in images of crops, taken from a wide range of distances, using different Convolutional Neural Network architectures. This methodology also deals with several difficulties that usually appear in this kind of problems, such as class imbalance, the insufficient and small variety of images, overtraining or lack of models generalisation. We have implemented four convolutional neural network architectures in a high-performance computing environment, and propose a methodology based on data augmentation with the addition of Gaussian noise to the images to solve the above problems. Our approach was tested using two well-established open datasets that are unalike: DeepWeeds, which provides a classification of 8 weed species native to Australia using images that were taken at a distance of 1 m, and Agriculture-Vision, which classifies 6 types of crop anomalies using multispectral satellite imagery. Our methodology attained accuracies of 98 % and 95.3% respectively, improving the state-of-the-art by several points. In order to ease reproducibility and model selection, we have provided a comparison in terms of computational time and other metrics, thus enabling the choice between architectures to be made according to the resources available. The complete code is available in an open repository in order to encourage reproducibility and promote scientific advances in sustainable agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰灰12138完成签到,获得积分10
刚刚
xxx发布了新的文献求助30
1秒前
MingQue完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助150
2秒前
2秒前
TheFuture发布了新的文献求助10
3秒前
3秒前
科研通AI6应助虚拟的画板采纳,获得10
5秒前
6秒前
Flex完成签到,获得积分10
7秒前
科研通AI5应助马到成功采纳,获得10
7秒前
sy发布了新的文献求助10
8秒前
8秒前
9秒前
浮游应助朴素的SCI缔造者采纳,获得10
10秒前
10秒前
溟夔蝶魅完成签到,获得积分20
10秒前
科研小白完成签到,获得积分10
10秒前
11秒前
柴子完成签到,获得积分10
12秒前
心木完成签到 ,获得积分10
12秒前
13秒前
共享精神应助serendipity采纳,获得10
13秒前
John完成签到 ,获得积分10
15秒前
TANG完成签到,获得积分10
15秒前
13223456发布了新的文献求助10
15秒前
kdf发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
852应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得50
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
GPTea应助科研通管家采纳,获得150
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
加菲丰丰应助科研通管家采纳,获得30
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133576
求助须知:如何正确求助?哪些是违规求助? 4334702
关于积分的说明 13504381
捐赠科研通 4171698
什么是DOI,文献DOI怎么找? 2287273
邀请新用户注册赠送积分活动 1288197
关于科研通互助平台的介绍 1229045