A Convolutional Neural Network approach for image-based anomaly detection in smart agriculture

计算机科学 卷积神经网络 异常检测 人工智能 图像(数学) 异常(物理) 模式识别(心理学) 农业 人工神经网络 计算机视觉 机器学习 生态学 凝聚态物理 生物 物理
作者
José Mendoza-Bernal,Aurora González-Vidal,Antonio F. Skarmeta-Gómez
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:247: 123210-123210
标识
DOI:10.1016/j.eswa.2024.123210
摘要

The recent technological advances and their applications to agriculture provide leverage for the new paradigm of smart agriculture. Remote sensing applications can help optimize resources, making agriculture more ecological, increasing productivity and helping farmers to anticipate events that could not otherwise be avoided. Considering that losses caused by anomalies such as diseases, weeds and pests account for 20-40 % of overall agricultural productivity, a successful research effort in this area would be a breakthrough for agriculture. In this paper, we propose a methodology with which to discover and classify anomalies in images of crops, taken from a wide range of distances, using different Convolutional Neural Network architectures. This methodology also deals with several difficulties that usually appear in this kind of problems, such as class imbalance, the insufficient and small variety of images, overtraining or lack of models generalisation. We have implemented four convolutional neural network architectures in a high-performance computing environment, and propose a methodology based on data augmentation with the addition of Gaussian noise to the images to solve the above problems. Our approach was tested using two well-established open datasets that are unalike: DeepWeeds, which provides a classification of 8 weed species native to Australia using images that were taken at a distance of 1 m, and Agriculture-Vision, which classifies 6 types of crop anomalies using multispectral satellite imagery. Our methodology attained accuracies of 98 % and 95.3% respectively, improving the state-of-the-art by several points. In order to ease reproducibility and model selection, we have provided a comparison in terms of computational time and other metrics, thus enabling the choice between architectures to be made according to the resources available. The complete code is available in an open repository in order to encourage reproducibility and promote scientific advances in sustainable agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安的语山完成签到,获得积分10
刚刚
2秒前
3秒前
sqb关闭了sqb文献求助
4秒前
Aythunder完成签到,获得积分10
4秒前
单薄店员发布了新的文献求助10
6秒前
yydragen应助敏感板栗采纳,获得30
6秒前
善学以致用应助yu采纳,获得10
7秒前
柳绿柳发布了新的文献求助10
8秒前
离枝发布了新的文献求助10
8秒前
8秒前
64658应助水煮牛肉采纳,获得10
8秒前
吴小台呀发布了新的文献求助10
9秒前
9秒前
9秒前
Orange应助紧张的寻冬采纳,获得10
9秒前
Zhy发布了新的文献求助10
11秒前
何hehe完成签到 ,获得积分10
11秒前
12秒前
12秒前
mmyhn发布了新的文献求助10
13秒前
皓月星辰发布了新的文献求助10
14秒前
安静曼彤发布了新的文献求助10
15秒前
16秒前
柳绿柳完成签到,获得积分10
16秒前
16秒前
20秒前
感动雁易完成签到,获得积分10
20秒前
yu发布了新的文献求助10
20秒前
请我吃葡萄完成签到 ,获得积分10
21秒前
牙牙完成签到,获得积分10
22秒前
离枝发布了新的文献求助10
24秒前
wangjun完成签到,获得积分10
25秒前
25秒前
26秒前
小郭应助hahaha采纳,获得10
26秒前
27秒前
28秒前
htx关注了科研通微信公众号
30秒前
ghost发布了新的文献求助10
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962670
求助须知:如何正确求助?哪些是违规求助? 3508680
关于积分的说明 11142146
捐赠科研通 3241403
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872935
科研通“疑难数据库(出版商)”最低求助积分说明 803517