A Convolutional Neural Network approach for image-based anomaly detection in smart agriculture

计算机科学 卷积神经网络 异常检测 人工智能 图像(数学) 异常(物理) 模式识别(心理学) 农业 人工神经网络 计算机视觉 机器学习 生态学 凝聚态物理 生物 物理
作者
José Mendoza-Bernal,Aurora González-Vidal,Antonio F. Skarmeta-Gómez
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123210-123210
标识
DOI:10.1016/j.eswa.2024.123210
摘要

The recent technological advances and their applications to agriculture provide leverage for the new paradigm of smart agriculture. Remote sensing applications can help optimize resources, making agriculture more ecological, increasing productivity and helping farmers to anticipate events that could not otherwise be avoided. Considering that losses caused by anomalies such as diseases, weeds and pests account for 20-40 % of overall agricultural productivity, a successful research effort in this area would be a breakthrough for agriculture. In this paper, we propose a methodology with which to discover and classify anomalies in images of crops, taken from a wide range of distances, using different Convolutional Neural Network architectures. This methodology also deals with several difficulties that usually appear in this kind of problems, such as class imbalance, the insufficient and small variety of images, overtraining or lack of models generalisation. We have implemented four convolutional neural network architectures in a high-performance computing environment, and propose a methodology based on data augmentation with the addition of Gaussian noise to the images to solve the above problems. Our approach was tested using two well-established open datasets that are unalike: DeepWeeds, which provides a classification of 8 weed species native to Australia using images that were taken at a distance of 1 m, and Agriculture-Vision, which classifies 6 types of crop anomalies using multispectral satellite imagery. Our methodology attained accuracies of 98 % and 95.3% respectively, improving the state-of-the-art by several points. In order to ease reproducibility and model selection, we have provided a comparison in terms of computational time and other metrics, thus enabling the choice between architectures to be made according to the resources available. The complete code is available in an open repository in order to encourage reproducibility and promote scientific advances in sustainable agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂的兔子完成签到,获得积分10
刚刚
充电宝应助长vefvj采纳,获得10
2秒前
3秒前
3秒前
qll完成签到,获得积分10
4秒前
Cynthia完成签到,获得积分10
4秒前
隐形盼海完成签到 ,获得积分10
5秒前
zhang完成签到 ,获得积分10
5秒前
干净的时光应助1L采纳,获得10
5秒前
高壳盐发布了新的文献求助10
5秒前
科研通AI2S应助孝顺的碧琴采纳,获得10
5秒前
zfy发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
二七完成签到,获得积分10
8秒前
askljfhdoal发布了新的文献求助10
8秒前
海盐气泡水完成签到,获得积分10
8秒前
wsg完成签到,获得积分10
9秒前
菠萝披萨完成签到,获得积分10
10秒前
11秒前
renew发布了新的文献求助50
11秒前
称心嫣娆发布了新的文献求助10
11秒前
zds发布了新的文献求助10
12秒前
zfy完成签到,获得积分10
13秒前
研友_VZG7GZ应助刘师傅采纳,获得10
16秒前
研友_Zl1Da8完成签到,获得积分10
16秒前
17秒前
天天快乐应助小慧儿采纳,获得10
17秒前
18秒前
18秒前
zhang关注了科研通微信公众号
19秒前
19秒前
mark2021完成签到,获得积分10
20秒前
抗体小王发布了新的文献求助10
20秒前
22秒前
zds完成签到,获得积分20
22秒前
长vefvj发布了新的文献求助10
22秒前
CodeCraft应助mm采纳,获得10
22秒前
诗图完成签到 ,获得积分10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760