已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Convolutional Neural Network approach for image-based anomaly detection in smart agriculture

计算机科学 卷积神经网络 异常检测 人工智能 图像(数学) 异常(物理) 模式识别(心理学) 农业 人工神经网络 计算机视觉 机器学习 生态学 凝聚态物理 生物 物理
作者
José Mendoza-Bernal,Aurora González-Vidal,Antonio F. Skarmeta-Gómez
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123210-123210
标识
DOI:10.1016/j.eswa.2024.123210
摘要

The recent technological advances and their applications to agriculture provide leverage for the new paradigm of smart agriculture. Remote sensing applications can help optimize resources, making agriculture more ecological, increasing productivity and helping farmers to anticipate events that could not otherwise be avoided. Considering that losses caused by anomalies such as diseases, weeds and pests account for 20-40 % of overall agricultural productivity, a successful research effort in this area would be a breakthrough for agriculture. In this paper, we propose a methodology with which to discover and classify anomalies in images of crops, taken from a wide range of distances, using different Convolutional Neural Network architectures. This methodology also deals with several difficulties that usually appear in this kind of problems, such as class imbalance, the insufficient and small variety of images, overtraining or lack of models generalisation. We have implemented four convolutional neural network architectures in a high-performance computing environment, and propose a methodology based on data augmentation with the addition of Gaussian noise to the images to solve the above problems. Our approach was tested using two well-established open datasets that are unalike: DeepWeeds, which provides a classification of 8 weed species native to Australia using images that were taken at a distance of 1 m, and Agriculture-Vision, which classifies 6 types of crop anomalies using multispectral satellite imagery. Our methodology attained accuracies of 98 % and 95.3% respectively, improving the state-of-the-art by several points. In order to ease reproducibility and model selection, we have provided a comparison in terms of computational time and other metrics, thus enabling the choice between architectures to be made according to the resources available. The complete code is available in an open repository in order to encourage reproducibility and promote scientific advances in sustainable agriculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sqHALO发布了新的文献求助10
刚刚
科研通AI6.1应助王先生采纳,获得10
1秒前
Jasper应助缘__采纳,获得10
1秒前
积极乐天发布了新的文献求助10
1秒前
桐桐应助月亮采纳,获得10
3秒前
简单十三完成签到,获得积分10
3秒前
dd完成签到,获得积分20
3秒前
5秒前
8秒前
黑泡泡发布了新的文献求助10
9秒前
Tangyuan完成签到,获得积分10
9秒前
李蝶儿完成签到 ,获得积分10
10秒前
Wdw2236完成签到,获得积分20
10秒前
sqHALO完成签到,获得积分10
11秒前
zhanzhanzhan完成签到,获得积分10
12秒前
香蕉觅云应助Tangyuan采纳,获得10
14秒前
Swu完成签到,获得积分10
15秒前
15秒前
所所应助zuzu采纳,获得10
19秒前
19秒前
20秒前
无情的冰香完成签到 ,获得积分10
22秒前
朱一龙完成签到,获得积分10
22秒前
27秒前
Criminology34举报ddrose求助涉嫌违规
27秒前
阿朱完成签到 ,获得积分10
28秒前
汉堡包应助孔夫子采纳,获得10
29秒前
天天快乐应助庾稀采纳,获得10
29秒前
chengxiping发布了新的文献求助10
29秒前
29秒前
yangyangyang完成签到,获得积分10
30秒前
31秒前
JohanXu完成签到,获得积分10
32秒前
深情安青应助wd采纳,获得10
33秒前
35秒前
yyy发布了新的文献求助10
35秒前
36秒前
rainbow完成签到,获得积分10
36秒前
36秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040