A Convolutional Neural Network approach for image-based anomaly detection in smart agriculture

计算机科学 卷积神经网络 异常检测 人工智能 图像(数学) 异常(物理) 模式识别(心理学) 农业 人工神经网络 计算机视觉 机器学习 生态学 凝聚态物理 生物 物理
作者
José Mendoza-Bernal,Aurora González-Vidal,Antonio F. Skarmeta-Gómez
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123210-123210
标识
DOI:10.1016/j.eswa.2024.123210
摘要

The recent technological advances and their applications to agriculture provide leverage for the new paradigm of smart agriculture. Remote sensing applications can help optimize resources, making agriculture more ecological, increasing productivity and helping farmers to anticipate events that could not otherwise be avoided. Considering that losses caused by anomalies such as diseases, weeds and pests account for 20-40 % of overall agricultural productivity, a successful research effort in this area would be a breakthrough for agriculture. In this paper, we propose a methodology with which to discover and classify anomalies in images of crops, taken from a wide range of distances, using different Convolutional Neural Network architectures. This methodology also deals with several difficulties that usually appear in this kind of problems, such as class imbalance, the insufficient and small variety of images, overtraining or lack of models generalisation. We have implemented four convolutional neural network architectures in a high-performance computing environment, and propose a methodology based on data augmentation with the addition of Gaussian noise to the images to solve the above problems. Our approach was tested using two well-established open datasets that are unalike: DeepWeeds, which provides a classification of 8 weed species native to Australia using images that were taken at a distance of 1 m, and Agriculture-Vision, which classifies 6 types of crop anomalies using multispectral satellite imagery. Our methodology attained accuracies of 98 % and 95.3% respectively, improving the state-of-the-art by several points. In order to ease reproducibility and model selection, we have provided a comparison in terms of computational time and other metrics, thus enabling the choice between architectures to be made according to the resources available. The complete code is available in an open repository in order to encourage reproducibility and promote scientific advances in sustainable agriculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
刚刚
刚刚
人九完成签到 ,获得积分10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
大龙哥886应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
yznfly应助科研通管家采纳,获得150
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得30
刚刚
orixero应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
小徐发布了新的文献求助10
1秒前
1秒前
milikki完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
小伊001完成签到,获得积分10
3秒前
儒雅静柏完成签到,获得积分10
5秒前
Chengzhu7发布了新的文献求助10
6秒前
6秒前
顾矜应助小徐采纳,获得10
6秒前
Limulu发布了新的文献求助30
6秒前
Hin66发布了新的文献求助10
8秒前
侯总应助南笛采纳,获得10
8秒前
Protein完成签到,获得积分10
8秒前
充电宝应助千禧龙采纳,获得10
8秒前
Junanne完成签到,获得积分10
9秒前
Susu完成签到,获得积分10
9秒前
11秒前
nn发布了新的文献求助10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300