PPformer: Using pixel-wise and patch-wise cross-attention for low-light image enhancement

计算机科学 人工智能 像素 模式识别(心理学) 计算机视觉
作者
Jiachen Dang,Yong Zhong,Xiaolin Qin
出处
期刊:Computer Vision and Image Understanding [Elsevier BV]
卷期号:241: 103930-103930 被引量:13
标识
DOI:10.1016/j.cviu.2024.103930
摘要

Recently, transformer-based methods have shown strong competition compared to CNN-based methods on the low-light image enhancement task, by employing the self-attention for feature extraction. Transformer-based methods perform well in modeling long-range pixel dependencies, which are essential for low-light image enhancement to achieve better lighting, natural colors, and higher contrast. However, the high computational cost of self-attention limits its development in low-light image enhancement, while some works struggle to balance accuracy and computational cost. In this work, we propose a lightweight and effective network based on the proposed pixel-wise and patch-wise cross-attention mechanism, PPformer, for low-light image enhancement. PPformer is a CNN-transformer hybrid network that is divided into three parts: local-branch, global-branch, and Dual Cross-Attention. Each part plays a vital role in PPformer. Specifically, the local-branch extracts local structural information using a stack of Wide Enhancement Modules, and the global-branch provides the refining global information by Cross Patch Module and Global Convolution Module. Besides, different from self-attention, we use extracted global semantic information to guide modeling dependencies between local and non-local. According to calculating Dual Cross-Attention, the PPformer can effectively restore images with better color consistency, natural brightness and contrast. Benefiting from the proposed dual cross-attention mechanism, PPformer effectively captures the dependencies in both pixel and patch levels for a full-size feature map. Extensive experiments on eleven real-world benchmark datasets show that PPformer achieves better quantitative and qualitative results than previous state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫蛋挞完成签到,获得积分10
刚刚
1秒前
fan发布了新的文献求助30
1秒前
julia发布了新的文献求助10
1秒前
退堂鼓完成签到,获得积分20
2秒前
caixukun完成签到,获得积分10
3秒前
3秒前
风枞完成签到 ,获得积分10
3秒前
4秒前
hq发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
酷炫蛋挞发布了新的文献求助10
9秒前
小彭完成签到,获得积分10
9秒前
bkagyin应助wwx采纳,获得10
9秒前
10秒前
科研通AI2S应助fan采纳,获得10
10秒前
11秒前
12秒前
小蘑菇应助有知采纳,获得10
13秒前
13秒前
顾矜应助asdfg采纳,获得10
13秒前
14秒前
14秒前
14秒前
长情博超完成签到,获得积分10
15秒前
可可西里发布了新的文献求助10
16秒前
xiangdannuli发布了新的文献求助10
16秒前
17秒前
yx_cheng发布了新的文献求助10
17秒前
17秒前
里lilili完成签到,获得积分10
17秒前
mmb发布了新的文献求助10
17秒前
难过的丹烟完成签到,获得积分10
18秒前
18秒前
完美梦松发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952732
求助须知:如何正确求助?哪些是违规求助? 3498228
关于积分的说明 11090865
捐赠科研通 3228782
什么是DOI,文献DOI怎么找? 1785114
邀请新用户注册赠送积分活动 869105
科研通“疑难数据库(出版商)”最低求助积分说明 801350