已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hyperspectral Image Classification Based on Mutually Guided Image Filtering

高光谱成像 人工智能 计算机科学 图像(数学) 模式识别(心理学) 计算机视觉 遥感 地质学
作者
Ying Zhan,Dan Hu,Xianchuan Yu,Yufeng Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (5): 870-870 被引量:1
标识
DOI:10.3390/rs16050870
摘要

Hyperspectral remote sensing images (HSIs) have both spectral and spatial characteristics. The adept exploitation of these attributes is central to enhancing the classification accuracy of HSIs. In order to effectively utilize spatial and spectral features to classify HSIs, this paper proposes a method for the spatial feature extraction of HSIs based on a mutually guided image filter (muGIF) and combined with the band-distance-grouped principal component. Firstly, aiming at the problem that previously guided image filtering cannot effectively deal with the inconsistent information structure between the guided and target information, a method for extracting spatial features using muGIF is proposed. Then, aiming at the problem of the information loss caused by a single principal component as a guided image in the traditional GIF-based spatial–spectral classification, a spatial feature-extraction framework based on the band-distance-grouped principal component is proposed. The method groups the bands according to the band distance and extracts the principal components of each set of band subsets as the guide map of the current band subset to filter the HSIs. A deep convolutional neural network model and a generative adversarial network model for the filtered HSIs are constructed and then trained using samples for HSIs’ spatial–spectral classification. Experiments show that compared with the traditional methods and several popular spatial–spectral HSI classification methods based on a filter, the proposed methods based on muGIF can effectively extract the spatial–spectral features and improve the classification accuracy of HSIs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zqq完成签到,获得积分10
2秒前
酒酿大圆子完成签到 ,获得积分10
7秒前
婷123完成签到 ,获得积分10
7秒前
Nowind完成签到,获得积分10
8秒前
9秒前
10秒前
LHS完成签到,获得积分10
13秒前
科研兵完成签到 ,获得积分10
13秒前
14秒前
SYLH应助苹果小虾米采纳,获得10
15秒前
LHS发布了新的文献求助10
16秒前
毛豆应助lbw采纳,获得10
17秒前
fighting完成签到,获得积分10
19秒前
jerry发布了新的文献求助10
19秒前
sunflowers完成签到 ,获得积分10
22秒前
23秒前
小丁发布了新的文献求助10
23秒前
水电费黑科技完成签到,获得积分10
25秒前
111完成签到 ,获得积分10
26秒前
龙骑士25完成签到 ,获得积分10
26秒前
27秒前
caitlin完成签到 ,获得积分10
28秒前
姚老表完成签到,获得积分10
31秒前
端庄的如花完成签到 ,获得积分10
31秒前
33秒前
PrayOne发布了新的文献求助10
33秒前
kjding发布了新的文献求助10
36秒前
39秒前
无悔呀完成签到 ,获得积分10
39秒前
FashionBoy应助一颗小星星采纳,获得10
43秒前
44秒前
kjding完成签到,获得积分10
44秒前
香蕉觅云应助freeaway采纳,获得10
44秒前
47秒前
53秒前
54秒前
55秒前
55秒前
58秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455593
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022781
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502690
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387