Enhancing Nitrate Reduction to Ammonia Through Crystal Phase Engineering: Unveiling the Hydrogen Bonding Effect in δ‐FeOOH Electrocatalysis

电催化剂 吸附 相(物质) 材料科学 密度泛函理论 可逆氢电极 Crystal(编程语言) 氮氧化物 无机化学 氢键 产量(工程) 化学工程 化学 纳米技术 电化学 计算化学 物理化学 有机化学 电极 冶金 分子 工程类 程序设计语言 燃烧 计算机科学 参比电极
作者
Kaiyu Qu,Xiaojuan Zhu,Yuxin Zhang,Leyang Song,Jing Wang,Yushuang Gong,Xiang Liu,An‐Liang Wang
出处
期刊:Small [Wiley]
卷期号:20 (31) 被引量:3
标识
DOI:10.1002/smll.202401327
摘要

Abstract Crystal phase engineering has emerged as a powerful tool for tailoring the electrocatalytic performance, yet its impact on nitrate reduction to ammonia (NRA) remains largely uncharted territory. Herein, density functional theory (DFT) calculations are performed to unravel the influence of the crystal phase of FeOOH on the adsorption behavior of *NO 3 . Inspiringly, FeOOH samples with four distinct crystal phases (δ, γ, α, and β) are successfully synthesized and deployed as electrocatalysts for NRA. Remarkably, among all FeOOH samples, δ‐FeOOH demonstrates the superior NRA performance, achieving a NH 3 Faradic efficiency () of 90.2% at –1.0 V versus reversible hydrogen electrode (RHE) and a NH 3 yield rate () of 5.73 mg h −1 cm −2 at –1.2 V. In‐depth experiments and theoretical calculations unveil the existence of hydrogen bonding interaction between δ‐FeOOH and *NO x , which not only enhances the adsorption of *NO x but also disrupts the linear relationships between the free energy of *NO 3 adsorption and various parameters, including limiting potential, d‐band center (ε d ) and transferred charge from FeOOH to *NO 3 , ultimately contributing to the exceptional NRA performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
剑兰先生应助科研通管家采纳,获得200
刚刚
Judy发布了新的文献求助10
刚刚
Shengwj完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
Ava应助科研通管家采纳,获得10
1秒前
勤奋沛珊应助科研通管家采纳,获得10
1秒前
大模型应助南城雨落采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
kingwill应助科研通管家采纳,获得20
1秒前
李健应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
BreezyGallery完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
类囊体薄膜完成签到,获得积分10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
852应助润润轩轩采纳,获得10
2秒前
氨基酸完成签到,获得积分10
2秒前
小月发布了新的文献求助10
2秒前
2秒前
Zzzz完成签到 ,获得积分10
2秒前
lzzj发布了新的文献求助10
2秒前
方圆完成签到,获得积分10
3秒前
3秒前
玲珑油豆腐完成签到,获得积分10
3秒前
3秒前
4秒前
星辰大海应助秋辞采纳,获得10
4秒前
4秒前
科研通AI5应助OceanBlvdforme采纳,获得10
4秒前
VDC发布了新的文献求助10
4秒前
5秒前
香蕉觅云应助DXXX采纳,获得10
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759