纤维素酶
化学
纤维素
食品科学
发酵
酶
淀粉酶
细菌
酶分析
铵
拉伤
硫酸铵
酶谱
生物化学
色谱法
生物
有机化学
遗传学
解剖
作者
Waseem Ayoub Malik,Saleem Javed
标识
DOI:10.1016/j.ijbiomac.2024.130415
摘要
Microbial diversity from indigenous cultures has the potential to accelerate lignocellulose degradation through enzymes and make composting economically feasible. Therefore, this study is designed to boost cellulase output from a bacterial strain obtained from soil using a one-variable-at-a-time approach and response surface methodology. The bacteria recognized as Bacillus tequilensis (ON754229) produced the maximum cellulase at a temperature of 37 °C, pH -7.0, and incubation time of 72 h. A major contribution was anticipated by glucose (17 %) and ammonium sulfate (11 %) with cellulase activity of 0.56 U/mL in the optimized medium. The enzyme possessed activity of CMCase, FPase, and amylase of 0.589 μmol/min, 1.22 μmol/min, and 0.92 μmol/min respectively. SDS-PAGE showed a 65 kDa molecular weight of the enzyme capable of degrading cellulose, as confirmed by zymogram analysis. The enzyme showed relatively moderate thermo-stability towards neutral pH conditions possessing optimum conditions at pH 6.5 and temperature of 50 °C. The Km and Vmax values were 11.44 mM and 0.643 μmol/min respectively. The presence of MgSO4, ZnSO4, and Triton X- 100 increased the enzymatic reaction however AgNO3, EDTA, and HgCl2 altered the activation process. These results showed cellulase from B. tequilensis SB125 would be suitable for conventional industrial processes that convert biomass into biofuels.
科研通智能强力驱动
Strongly Powered by AbleSci AI