Diverter transformer-based multi-encoder-multi-decoder network model for medical retinal blood vessel image segmentation

计算机科学 编码器 分割 变压器 人工智能 计算机视觉 视网膜 图像分割 医学 眼科 电压 电气工程 工程类 操作系统
作者
Chengwei Wu,Min Guo,Miao Ma,Kaiguang Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:93: 106132-106132 被引量:4
标识
DOI:10.1016/j.bspc.2024.106132
摘要

The retinal blood vessel is an essential part of the fundus structure. It is important to accurately analyze the structure and distribution of retinal vessels, which can help make accurate medical diagnoses. However, it is still challenging to extract detailed information due to the problems of fuzzy edges, low resolution, and lots of noise in retinal blood vessel medical images. To extract the image detail information effectively, we propose a new diverter transformer-based multi-encoder-multi-decoder network model in this paper. The network model consists of a feature encoder module and a feature decoder module. Among them, the feature encoding module consists of a diverter transformer with a diverter adaptive mechanism, three encoder units with a convolution layer and max-pooling layer, and the two decoder units in the feature decoding module consist of an inverse convolution layer and an up-sampling layer, respectively. The Local Context Module (LCNet Module) in the feature encoding module learns richer local context feature information layer by layer through changing the width of the network while downsampling; the Global Encoder Module1 (G-Encoder Module1) and the Global Encoder Module2 (G-Encoder Module2) extract the global feature representation of retinal blood vessel images by performing a max-pooling operation to transform the input data into a vector of fixed dimensions, thus helping the network model to better understand and extract the global feature representation of retinal blood vessel images. The two decoder units in the feature decoding module receive local and global feature information from three encoder units, LCNet Module, G-Encoder Module1 and G-Encoder Module2, respectively. Decoder Module1 generates segmentation prediction by layer-by-layer up-sampling operation, and Decoder Module2 recovers the feature information by downsampling and decoding operations and fuses the recovered feature information to output, obtaining the final segmentation of the retinal blood vessels. The proposed diverter transformer-based multi-encoder-multi-decoder network model is validated on the DRIVE and STARE datasets with other classical and state-of-the-art network models, and its segmentation accuracy is 97.25% and 97.93%, respectively. Compared with the classical U-Net model, the improvement is 2.24% and 1.42%, respectively. Compared with the state-of-the-art SPNet model, the accuracy is increased by 0.61% on DRIVE and 1.01% on STARE. It indicates that the network model proposed in this paper has a significant competitive advantage in improving the segmentation performance of retinal blood vessel images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助暗中讨饭采纳,获得10
2秒前
只争朝夕应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
领导范儿应助qwer采纳,获得10
3秒前
3秒前
3秒前
3秒前
无尘发布了新的文献求助10
3秒前
4秒前
田様应助sylus采纳,获得10
5秒前
xr123456发布了新的文献求助10
5秒前
思絮完成签到 ,获得积分10
7秒前
自由冬亦完成签到,获得积分10
7秒前
嘿嘿发布了新的文献求助10
8秒前
安静的鸽子完成签到,获得积分10
9秒前
疯狂的曲奇完成签到,获得积分10
10秒前
10秒前
PhD_HanWu完成签到,获得积分10
11秒前
15秒前
薛而不思则罔完成签到 ,获得积分10
15秒前
等待从阳发布了新的文献求助30
15秒前
弹剑作歌完成签到,获得积分10
18秒前
20秒前
英姑应助Dr.c采纳,获得10
20秒前
慕青应助水中捞月采纳,获得10
21秒前
小琪发布了新的文献求助10
21秒前
yyanxuemin919发布了新的文献求助10
22秒前
25秒前
fy2001发布了新的文献求助30
27秒前
hhh555完成签到,获得积分10
27秒前
28秒前
小马甲应助zkeeee采纳,获得10
28秒前
酷炫灰狼发布了新的文献求助10
29秒前
xr123456完成签到,获得积分10
30秒前
范fan发布了新的文献求助10
30秒前
31秒前
沉默红牛完成签到,获得积分20
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432