已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diverter transformer-based multi-encoder-multi-decoder network model for medical retinal blood vessel image segmentation

计算机科学 编码器 分割 变压器 人工智能 计算机视觉 视网膜 图像分割 医学 眼科 电压 电气工程 操作系统 工程类
作者
Chengwei Wu,Min Guo,Miao Ma,Kaiguang Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:93: 106132-106132 被引量:4
标识
DOI:10.1016/j.bspc.2024.106132
摘要

The retinal blood vessel is an essential part of the fundus structure. It is important to accurately analyze the structure and distribution of retinal vessels, which can help make accurate medical diagnoses. However, it is still challenging to extract detailed information due to the problems of fuzzy edges, low resolution, and lots of noise in retinal blood vessel medical images. To extract the image detail information effectively, we propose a new diverter transformer-based multi-encoder-multi-decoder network model in this paper. The network model consists of a feature encoder module and a feature decoder module. Among them, the feature encoding module consists of a diverter transformer with a diverter adaptive mechanism, three encoder units with a convolution layer and max-pooling layer, and the two decoder units in the feature decoding module consist of an inverse convolution layer and an up-sampling layer, respectively. The Local Context Module (LCNet Module) in the feature encoding module learns richer local context feature information layer by layer through changing the width of the network while downsampling; the Global Encoder Module1 (G-Encoder Module1) and the Global Encoder Module2 (G-Encoder Module2) extract the global feature representation of retinal blood vessel images by performing a max-pooling operation to transform the input data into a vector of fixed dimensions, thus helping the network model to better understand and extract the global feature representation of retinal blood vessel images. The two decoder units in the feature decoding module receive local and global feature information from three encoder units, LCNet Module, G-Encoder Module1 and G-Encoder Module2, respectively. Decoder Module1 generates segmentation prediction by layer-by-layer up-sampling operation, and Decoder Module2 recovers the feature information by downsampling and decoding operations and fuses the recovered feature information to output, obtaining the final segmentation of the retinal blood vessels. The proposed diverter transformer-based multi-encoder-multi-decoder network model is validated on the DRIVE and STARE datasets with other classical and state-of-the-art network models, and its segmentation accuracy is 97.25% and 97.93%, respectively. Compared with the classical U-Net model, the improvement is 2.24% and 1.42%, respectively. Compared with the state-of-the-art SPNet model, the accuracy is increased by 0.61% on DRIVE and 1.01% on STARE. It indicates that the network model proposed in this paper has a significant competitive advantage in improving the segmentation performance of retinal blood vessel images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
沈万熙发布了新的文献求助10
3秒前
SS发布了新的文献求助10
3秒前
猪猪hero应助科研通管家采纳,获得30
4秒前
猪猪hero应助科研通管家采纳,获得10
4秒前
猪猪hero应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
FIN应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
pywangsmmu92完成签到,获得积分10
5秒前
桐桐应助念安采纳,获得10
8秒前
9秒前
9秒前
11秒前
靖柔发布了新的文献求助10
14秒前
16秒前
恶魔强发布了新的文献求助10
16秒前
曾经曼梅发布了新的文献求助10
16秒前
123zyx完成签到 ,获得积分10
19秒前
李健应助xzx采纳,获得10
20秒前
zxq1996完成签到 ,获得积分10
22秒前
Good_小鬼完成签到,获得积分10
24秒前
25秒前
绝不熬夜完成签到,获得积分10
26秒前
扶摇完成签到 ,获得积分10
27秒前
27秒前
27秒前
mc发布了新的文献求助10
30秒前
英俊的铭应助王小嘻采纳,获得10
30秒前
天天快乐应助小河向东流采纳,获得10
31秒前
牛肉面完成签到 ,获得积分10
33秒前
寒雪发布了新的文献求助10
33秒前
34秒前
尼大王完成签到,获得积分10
35秒前
Dritsw应助曾经曼梅采纳,获得10
36秒前
小马甲应助靖柔采纳,获得10
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510727
关于积分的说明 11154880
捐赠科研通 3245180
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168