亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diverter transformer-based multi-encoder-multi-decoder network model for medical retinal blood vessel image segmentation

计算机科学 编码器 分割 变压器 人工智能 计算机视觉 视网膜 图像分割 医学 眼科 电压 电气工程 工程类 操作系统
作者
Chengwei Wu,Min Guo,Miao Ma,Kaiguang Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:93: 106132-106132 被引量:4
标识
DOI:10.1016/j.bspc.2024.106132
摘要

The retinal blood vessel is an essential part of the fundus structure. It is important to accurately analyze the structure and distribution of retinal vessels, which can help make accurate medical diagnoses. However, it is still challenging to extract detailed information due to the problems of fuzzy edges, low resolution, and lots of noise in retinal blood vessel medical images. To extract the image detail information effectively, we propose a new diverter transformer-based multi-encoder-multi-decoder network model in this paper. The network model consists of a feature encoder module and a feature decoder module. Among them, the feature encoding module consists of a diverter transformer with a diverter adaptive mechanism, three encoder units with a convolution layer and max-pooling layer, and the two decoder units in the feature decoding module consist of an inverse convolution layer and an up-sampling layer, respectively. The Local Context Module (LCNet Module) in the feature encoding module learns richer local context feature information layer by layer through changing the width of the network while downsampling; the Global Encoder Module1 (G-Encoder Module1) and the Global Encoder Module2 (G-Encoder Module2) extract the global feature representation of retinal blood vessel images by performing a max-pooling operation to transform the input data into a vector of fixed dimensions, thus helping the network model to better understand and extract the global feature representation of retinal blood vessel images. The two decoder units in the feature decoding module receive local and global feature information from three encoder units, LCNet Module, G-Encoder Module1 and G-Encoder Module2, respectively. Decoder Module1 generates segmentation prediction by layer-by-layer up-sampling operation, and Decoder Module2 recovers the feature information by downsampling and decoding operations and fuses the recovered feature information to output, obtaining the final segmentation of the retinal blood vessels. The proposed diverter transformer-based multi-encoder-multi-decoder network model is validated on the DRIVE and STARE datasets with other classical and state-of-the-art network models, and its segmentation accuracy is 97.25% and 97.93%, respectively. Compared with the classical U-Net model, the improvement is 2.24% and 1.42%, respectively. Compared with the state-of-the-art SPNet model, the accuracy is increased by 0.61% on DRIVE and 1.01% on STARE. It indicates that the network model proposed in this paper has a significant competitive advantage in improving the segmentation performance of retinal blood vessel images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸的雁露完成签到,获得积分10
刚刚
11112321321完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助20
18秒前
陶醉的烤鸡完成签到 ,获得积分10
26秒前
顾矜应助shimly0101xx采纳,获得10
38秒前
38秒前
42秒前
43秒前
眼睛大的松鼠完成签到,获得积分10
48秒前
猪四郎完成签到,获得积分10
53秒前
文献四面八方来完成签到,获得积分10
1分钟前
哈哈哈完成签到,获得积分10
1分钟前
米线儿完成签到,获得积分10
1分钟前
一一应助liudy采纳,获得10
1分钟前
安静绯完成签到,获得积分20
1分钟前
荼黎应助李雅琪采纳,获得30
1分钟前
Yuan完成签到 ,获得积分10
1分钟前
1分钟前
shimly0101xx发布了新的文献求助10
1分钟前
1分钟前
开放道天发布了新的文献求助10
2分钟前
2分钟前
MchemG应助科研通管家采纳,获得200
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
YCCC完成签到,获得积分10
3分钟前
朴素的山蝶完成签到 ,获得积分10
3分钟前
晨云完成签到,获得积分10
3分钟前
3分钟前
耿耿完成签到,获得积分10
3分钟前
3分钟前
耿耿发布了新的文献求助10
3分钟前
3分钟前
caca完成签到,获得积分0
3分钟前
3分钟前
YCCC发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617027
求助须知:如何正确求助?哪些是违规求助? 4701416
关于积分的说明 14913541
捐赠科研通 4748450
什么是DOI,文献DOI怎么找? 2549262
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474080