Diverter transformer-based multi-encoder-multi-decoder network model for medical retinal blood vessel image segmentation

计算机科学 编码器 分割 变压器 人工智能 计算机视觉 视网膜 图像分割 医学 眼科 电压 电气工程 工程类 操作系统
作者
Chengwei Wu,Min Guo,Miao Ma,Kaiguang Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:93: 106132-106132 被引量:4
标识
DOI:10.1016/j.bspc.2024.106132
摘要

The retinal blood vessel is an essential part of the fundus structure. It is important to accurately analyze the structure and distribution of retinal vessels, which can help make accurate medical diagnoses. However, it is still challenging to extract detailed information due to the problems of fuzzy edges, low resolution, and lots of noise in retinal blood vessel medical images. To extract the image detail information effectively, we propose a new diverter transformer-based multi-encoder-multi-decoder network model in this paper. The network model consists of a feature encoder module and a feature decoder module. Among them, the feature encoding module consists of a diverter transformer with a diverter adaptive mechanism, three encoder units with a convolution layer and max-pooling layer, and the two decoder units in the feature decoding module consist of an inverse convolution layer and an up-sampling layer, respectively. The Local Context Module (LCNet Module) in the feature encoding module learns richer local context feature information layer by layer through changing the width of the network while downsampling; the Global Encoder Module1 (G-Encoder Module1) and the Global Encoder Module2 (G-Encoder Module2) extract the global feature representation of retinal blood vessel images by performing a max-pooling operation to transform the input data into a vector of fixed dimensions, thus helping the network model to better understand and extract the global feature representation of retinal blood vessel images. The two decoder units in the feature decoding module receive local and global feature information from three encoder units, LCNet Module, G-Encoder Module1 and G-Encoder Module2, respectively. Decoder Module1 generates segmentation prediction by layer-by-layer up-sampling operation, and Decoder Module2 recovers the feature information by downsampling and decoding operations and fuses the recovered feature information to output, obtaining the final segmentation of the retinal blood vessels. The proposed diverter transformer-based multi-encoder-multi-decoder network model is validated on the DRIVE and STARE datasets with other classical and state-of-the-art network models, and its segmentation accuracy is 97.25% and 97.93%, respectively. Compared with the classical U-Net model, the improvement is 2.24% and 1.42%, respectively. Compared with the state-of-the-art SPNet model, the accuracy is increased by 0.61% on DRIVE and 1.01% on STARE. It indicates that the network model proposed in this paper has a significant competitive advantage in improving the segmentation performance of retinal blood vessel images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NIKI0807发布了新的文献求助10
刚刚
an发布了新的文献求助30
刚刚
坚强的哈密瓜完成签到,获得积分10
1秒前
1秒前
1秒前
KerwinYang发布了新的文献求助10
1秒前
2秒前
memory完成签到 ,获得积分10
2秒前
华彬心完成签到 ,获得积分10
2秒前
科研阳完成签到,获得积分10
2秒前
2秒前
2秒前
黄耀完成签到,获得积分10
3秒前
张姣姣完成签到,获得积分10
3秒前
黑囡发布了新的文献求助10
3秒前
3秒前
梅痕公子完成签到,获得积分10
3秒前
陌离发布了新的文献求助10
3秒前
4秒前
吕小布完成签到,获得积分10
4秒前
4秒前
myth完成签到,获得积分10
5秒前
pia叽完成签到 ,获得积分10
5秒前
感动水杯完成签到,获得积分10
5秒前
www完成签到,获得积分10
6秒前
6秒前
蛙蛙完成签到,获得积分10
6秒前
陈文娜发布了新的文献求助10
6秒前
kirazou完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
漂亮凌旋发布了新的文献求助10
8秒前
ding应助顺利的源智采纳,获得10
8秒前
斯文书双发布了新的文献求助10
8秒前
小天才发布了新的文献求助10
9秒前
丸丸发布了新的文献求助10
9秒前
余木完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510604
求助须知:如何正确求助?哪些是违规求助? 4605285
关于积分的说明 14494046
捐赠科研通 4540471
什么是DOI,文献DOI怎么找? 2487994
邀请新用户注册赠送积分活动 1470248
关于科研通互助平台的介绍 1442670