Precise coordination of high-loading Fe single atoms with sulfur boosts selective generation of nonradicals

反应性(心理学) 产量(工程) 硫黄 化学 激进的 单线态氧 Atom(片上系统) 光化学 结晶学 氧气 无机化学 材料科学 有机化学 计算机科学 替代医学 冶金 嵌入式系统 病理 医学
作者
Xun‐Heng Jiang,Binghui Zhou,Weijie Yang,Jiayi Chen,Miao Chen,Zhongyuan Guo,Hao Li,Yang Hou,Xinhua Xu,Lizhong Zhu,Daohui Lin,Jiang Xu
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (4) 被引量:13
标识
DOI:10.1073/pnas.2309102121
摘要

Nonradicals are effective in selectively degrading electron-rich organic contaminants, which unfortunately suffer from unsatisfactory yield and uncontrollable composition due to the competitive generation of radicals. Herein, we precisely construct a local microenvironment of the carbon nitride–supported high-loading (~9 wt.%) Fe single-atom catalyst (Fe SAC) with sulfur via a facile supermolecular self-assembly strategy. Short-distance S coordination boosts the peroxymonosulfate (PMS) activation and selectively generates high-valent iron–oxo species (Fe IV =O) along with singlet oxygen ( 1 O 2 ), significantly increasing the 1 O 2 yield, PMS utilization, and p -chlorophenol reactivity by 6.0, 3.0, and 8.4 times, respectively. The composition of nonradicals is controllable by simply changing the S content. In contrast, long-distance S coordination generates both radicals and nonradicals, and could not promote reactivity. Experimental and theoretical analyses suggest that the short-distance S upshifts the d -band center of the Fe atom, i.e., being close to the Fermi level, which changes the binding mode between the Fe atom and O site of PMS to selectively generate 1 O 2 and Fe IV =O with a high yield. The short-distance S-coordinated Fe SAC exhibits excellent application potential in various water matrices. These findings can guide the rational design of robust SACs toward a selective and controllable generation of nonradicals with high yield and PMS utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
清晏完成签到,获得积分10
3秒前
曲书文完成签到,获得积分10
4秒前
李瑞瑞发布了新的文献求助10
4秒前
5123完成签到,获得积分10
4秒前
勤劳落雁发布了新的文献求助10
4秒前
4秒前
7秒前
xuxu完成签到 ,获得积分10
7秒前
8秒前
毛毛虫发布了新的文献求助10
8秒前
科研通AI5应助朴斓采纳,获得10
9秒前
陈彦冰完成签到,获得积分10
9秒前
tianny完成签到,获得积分10
10秒前
浪迹天涯发布了新的文献求助10
11秒前
星星发布了新的文献求助10
11秒前
李瑞瑞完成签到,获得积分10
12秒前
12秒前
14秒前
星辰大海应助jy采纳,获得10
14秒前
15秒前
我是站长才怪应助Khr1stINK采纳,获得10
15秒前
16秒前
xh完成签到,获得积分10
17秒前
para_团结完成签到,获得积分10
18秒前
怡然剑成发布了新的文献求助10
18秒前
19秒前
19秒前
ipeakkka发布了新的文献求助10
19秒前
George完成签到,获得积分10
21秒前
WDK完成签到,获得积分10
21秒前
情怀应助敏感的芷采纳,获得10
21秒前
Orange应助方勇飞采纳,获得10
22秒前
FashionBoy应助烂漫驳采纳,获得10
22秒前
23秒前
24秒前
大鱼完成签到,获得积分10
24秒前
24秒前
lu完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824