Predicting the therapeutic response to valproic acid in childhood absence epilepsy through electroencephalogram analysis using machine learning

丙戊酸 癫痫 发作性 脑电图 随机森林 儿童失神癫痫 去趋势波动分析 人口 人工智能 医学 内科学 机器学习 计算机科学 数学 精神科 缩放比例 环境卫生 几何学
作者
Shengping Li,Lung‐Chang Lin,Rei‐Cheng Yang,Chen‐Sen Ouyang,Yi-Hung Chiu,Mu-Han Wu,Yi‐Fang Tu,Tung‐Ming Chang,Rong‐Ching Wu
出处
期刊:Epilepsy & Behavior [Elsevier BV]
卷期号:151: 109647-109647 被引量:3
标识
DOI:10.1016/j.yebeh.2024.109647
摘要

Childhood absence epilepsy (CAE) is a common type of idiopathic generalized epilepsy, manifesting as daily multiple absence seizures. Although seizures in most patients can be adequately controlled with first-line antiseizure medication (ASM), approximately 25 % of patients respond poorly to first-line ASM. In addition, an accurate method for predicting first-line medication responsiveness is lacking. We used the quantitative electroencephalogram (QEEG) features of patients with CAE along with machine learning to predict the therapeutic effects of valproic acid in this population. We enrolled 25 patients with CAE from multiple medical centers. Twelve patients who required additional medication for seizure control or who were shifted to another ASM and 13 patients who achieved seizure freedom with valproic acid within 6 months served as the nonresponder and responder groups. Using machine learning, we analyzed the interictal background EEG data without epileptiform discharge before ASM. The following features were analyzed: EEG frequency bands, Hjorth parameters, detrended fluctuation analysis, Higuchi fractal dimension, Lempel–Ziv complexity (LZC), Petrosian fractal dimension, and sample entropy (SE). We applied leave-one-out cross-validation with support vector machine, K-nearest neighbor (KNN), random forest, decision tree, Ada boost, and extreme gradient boosting, and we tested the performance of these models. The responders had significantly higher alpha band power and lower delta band power than the nonresponders. The Hjorth mobility, LZC, and SE values in the temporal, parietal, and occipital lobes were higher in the responders than in the nonresponders. Hjorth complexity was higher in the nonresponders than in the responders in almost all the brain regions, except for the leads FP1 and FP2. Using KNN classification with theta band power in the temporal lobe yielded optimal performance, with sensitivity of 92.31 %, specificity of 76.92 %, accuracy of 84.62 %, and area under the curve of 88.46 %.We used various EEG features along with machine learning to accurately predict whether patients with CAE would respond to valproic acid. Our method could provide valuable assistance for pediatric neurologists in selecting suitable ASM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
4秒前
lve发布了新的文献求助10
4秒前
CipherSage应助灰灰她会飞采纳,获得10
6秒前
薏仁完成签到 ,获得积分10
6秒前
英俊的铭应助大胆电源采纳,获得10
7秒前
7秒前
大模型应助晓晨采纳,获得10
7秒前
gemini0615发布了新的文献求助10
8秒前
罐装发布了新的文献求助10
8秒前
8秒前
annie2D发布了新的文献求助10
9秒前
miss发布了新的文献求助10
11秒前
cyp完成签到,获得积分10
11秒前
11秒前
Upup发布了新的文献求助30
13秒前
CipherSage应助gemini0615采纳,获得10
14秒前
15秒前
16秒前
aaaaa发布了新的文献求助10
16秒前
星辰大海应助yulong采纳,获得10
17秒前
坚强紫山完成签到,获得积分20
17秒前
18秒前
坦率铅笔完成签到,获得积分10
18秒前
19秒前
王要发财发布了新的文献求助10
19秒前
芝芝抹茶米麻薯完成签到,获得积分10
21秒前
Elanie完成签到,获得积分10
21秒前
小尘发布了新的文献求助10
21秒前
庄冬丽完成签到,获得积分20
22秒前
kylooe415完成签到,获得积分10
24秒前
25秒前
Elvira完成签到,获得积分10
25秒前
28秒前
yxt发布了新的文献求助10
28秒前
zzh发布了新的文献求助10
29秒前
32秒前
33秒前
高分求助中
All the Birds of the World 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3724960
求助须知:如何正确求助?哪些是违规求助? 3270180
关于积分的说明 9964548
捐赠科研通 2985004
什么是DOI,文献DOI怎么找? 1637709
邀请新用户注册赠送积分活动 777716
科研通“疑难数据库(出版商)”最低求助积分说明 747128