已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of leaf diseases in field crops based on improved ShuffleNetV2

计算机科学 鉴定(生物学) 特征(语言学) 领域(数学) 特征提取 残余物 模式识别(心理学) 人工智能 比例(比率) 频道(广播) 植物病害 算法 数学 生物技术 植物 纯数学 生物 计算机网络 语言学 哲学 物理 量子力学
作者
Hanmi Zhou,Jiageng Chen,Xiaoli Niu,Zhiguang Dai,Long Qin,Linshuang Ma,Jichen Li,Yumin Su,Qi Wu
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1342123
摘要

Rapid and accurate identification and timely protection of crop disease is of great importance for ensuring crop yields. Aiming at the problems of large model parameters of existing crop disease recognition methods and low recognition accuracy in the complex background of the field, we propose a lightweight crop leaf disease recognition model based on improved ShuffleNetV2. First, the repetition number and the number of output channels of the basic module of the ShuffleNetV2 model are redesigned to reduce the model parameters to make the model more lightweight while ensuring the accuracy of the model. Second, the residual structure is introduced in the basic feature extraction module to solve the gradient vanishing problem and enable the model to learn more complex feature representations. Then, parallel paths were added to the mechanism of the efficient channel attention (ECA) module, and the weights of different paths were adaptively updated by learnable parameters, and then the efficient dual channel attention (EDCA) module was proposed, which was embedded into the ShuffleNetV2 to improve the cross-channel interaction capability of the model. Finally, a multi-scale shallow feature extraction module and a multi-scale deep feature extraction module were introduced to improve the model’s ability to extract lesions at different scales. Based on the above improvements, a lightweight crop leaf disease recognition model REM-ShuffleNetV2 was proposed. Experiments results show that the accuracy and F1 score of the REM-ShuffleNetV2 model on the self-constructed field crop leaf disease dataset are 96.72% and 96.62%, which are 3.88% and 4.37% higher than that of the ShuffleNetV2 model; and the number of model parameters is 4.40M, which is 9.65% less than that of the original model. Compared with classic networks such as DenseNet121, EfficientNet, and MobileNetV3, the REM-ShuffleNetV2 model not only has higher recognition accuracy but also has fewer model parameters. The REM-ShuffleNetV2 model proposed in this study can achieve accurate identification of crop leaf disease in complex field backgrounds, and the model is small, which is convenient to deploy to the mobile end, and provides a reference for intelligent diagnosis of crop leaf disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjq完成签到,获得积分10
刚刚
光亮的夜雪完成签到,获得积分10
1秒前
hym111发布了新的文献求助10
1秒前
风趣秋白发布了新的文献求助10
2秒前
小马甲应助糊涂的白梦采纳,获得30
2秒前
3秒前
NexusExplorer应助小海狸采纳,获得10
3秒前
林洁佳完成签到,获得积分10
5秒前
慕青应助zjq采纳,获得10
6秒前
酷波er应助胡萝卜叶子采纳,获得10
7秒前
尹妮妮发布了新的文献求助10
8秒前
10秒前
LNE完成签到,获得积分10
11秒前
11秒前
12秒前
NexusExplorer应助LELE采纳,获得10
14秒前
15秒前
所所应助mly采纳,获得10
15秒前
李骞发布了新的文献求助10
15秒前
KUKU发布了新的文献求助10
16秒前
16秒前
cccxxi发布了新的文献求助10
17秒前
研友_LJGoXn发布了新的文献求助10
18秒前
18秒前
英俊的铭应助香草哥采纳,获得10
18秒前
xiaogao关注了科研通微信公众号
19秒前
20秒前
seven发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
24秒前
25秒前
26秒前
LELE发布了新的文献求助10
27秒前
解松发布了新的文献求助10
27秒前
28秒前
绿野仙踪完成签到,获得积分10
28秒前
糊涂的白梦完成签到,获得积分10
29秒前
atcha完成签到 ,获得积分10
29秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491104
求助须知:如何正确求助?哪些是违规求助? 3077781
关于积分的说明 9150387
捐赠科研通 2770232
什么是DOI,文献DOI怎么找? 1520217
邀请新用户注册赠送积分活动 704513
科研通“疑难数据库(出版商)”最低求助积分说明 702196