Unraveling lexical semantics in the brain: Comparing internal, external, and hybrid language models

语义学(计算机科学) 自然语言处理 计算机科学 人工智能 语言学 词汇语义学 心理学 词汇项目 程序设计语言 哲学
作者
Yang Yang,Luan Li,Simon De Deyne,Bing Li,Jing Wang,Qing Cai
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (1) 被引量:5
标识
DOI:10.1002/hbm.26546
摘要

Abstract To explain how the human brain represents and organizes meaning, many theoretical and computational language models have been proposed over the years, varying in their underlying computational principles and in the language samples based on which they are built. However, how well they capture the neural encoding of lexical semantics remains elusive. We used representational similarity analysis (RSA) to evaluate to what extent three models of different types explained neural responses elicited by word stimuli: an External corpus‐based word2vec model, an Internal free word association model, and a Hybrid ConceptNet model. Semantic networks were constructed using word relations computed in the three models and experimental stimuli were selected through a community detection procedure. The similarity patterns between language models and neural responses were compared at the community, exemplar, and word node levels to probe the potential hierarchical semantic structure. We found that semantic relations computed with the Internal model provided the closest approximation to the patterns of neural activation, whereas the External model did not capture neural responses as well. Compared with the exemplar and the node levels, community‐level RSA demonstrated the broadest involvement of brain regions, engaging areas critical for semantic processing, including the angular gyrus, superior frontal gyrus and a large portion of the anterior temporal lobe. The findings highlight the multidimensional semantic organization in the brain which is better captured by Internal models sensitive to multiple modalities such as word association compared with External models trained on text corpora.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DrPika完成签到,获得积分10
2秒前
efengmo完成签到,获得积分10
4秒前
Vegeta完成签到 ,获得积分10
6秒前
冷酷夏真完成签到 ,获得积分10
8秒前
Akim应助历史真相采纳,获得10
9秒前
小事完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
犹豫的雨柏完成签到,获得积分10
12秒前
GXW完成签到,获得积分10
12秒前
Qian完成签到,获得积分10
13秒前
13秒前
11完成签到,获得积分10
15秒前
Astra完成签到,获得积分10
16秒前
害怕的冰颜完成签到 ,获得积分10
18秒前
都都完成签到 ,获得积分10
20秒前
Loey完成签到,获得积分10
20秒前
wuju完成签到,获得积分10
22秒前
23秒前
spicyfish完成签到,获得积分10
24秒前
勤奋的花卷完成签到 ,获得积分10
24秒前
HopeLee完成签到,获得积分10
25秒前
ybcy完成签到,获得积分10
25秒前
pl完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
听寒完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
29秒前
Kkkk完成签到 ,获得积分10
30秒前
kk完成签到 ,获得积分10
30秒前
32秒前
行者在远方完成签到 ,获得积分10
33秒前
32429606完成签到 ,获得积分10
34秒前
怡然的鱼发布了新的文献求助10
34秒前
历史真相发布了新的文献求助10
35秒前
风中元瑶完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
42秒前
刘雪晴完成签到 ,获得积分10
42秒前
勾勾1991完成签到,获得积分10
43秒前
整齐的大开完成签到 ,获得积分0
43秒前
lulu完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839