Unraveling lexical semantics in the brain: Comparing internal, external, and hybrid language models

语义学(计算机科学) 自然语言处理 计算机科学 人工智能 语言学 词汇语义学 心理学 词汇项目 程序设计语言 哲学
作者
Yang Yang,Luan Li,Simon De Deyne,Bing Li,Jing Wang,Qing Cai
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (1) 被引量:5
标识
DOI:10.1002/hbm.26546
摘要

Abstract To explain how the human brain represents and organizes meaning, many theoretical and computational language models have been proposed over the years, varying in their underlying computational principles and in the language samples based on which they are built. However, how well they capture the neural encoding of lexical semantics remains elusive. We used representational similarity analysis (RSA) to evaluate to what extent three models of different types explained neural responses elicited by word stimuli: an External corpus‐based word2vec model, an Internal free word association model, and a Hybrid ConceptNet model. Semantic networks were constructed using word relations computed in the three models and experimental stimuli were selected through a community detection procedure. The similarity patterns between language models and neural responses were compared at the community, exemplar, and word node levels to probe the potential hierarchical semantic structure. We found that semantic relations computed with the Internal model provided the closest approximation to the patterns of neural activation, whereas the External model did not capture neural responses as well. Compared with the exemplar and the node levels, community‐level RSA demonstrated the broadest involvement of brain regions, engaging areas critical for semantic processing, including the angular gyrus, superior frontal gyrus and a large portion of the anterior temporal lobe. The findings highlight the multidimensional semantic organization in the brain which is better captured by Internal models sensitive to multiple modalities such as word association compared with External models trained on text corpora.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助冯xiaoni采纳,获得10
刚刚
JamesPei应助完美不惜采纳,获得10
3秒前
3秒前
无悔呀完成签到,获得积分10
3秒前
i的问题完成签到,获得积分20
3秒前
4秒前
木沐心完成签到,获得积分20
4秒前
9秒前
i的问题发布了新的文献求助10
9秒前
稀罕你完成签到,获得积分10
9秒前
思源应助lalaheilala采纳,获得10
10秒前
10秒前
毛豆应助WWWW采纳,获得10
11秒前
幽默金鱼关注了科研通微信公众号
12秒前
xv完成签到,获得积分10
14秒前
唧唧完成签到,获得积分20
15秒前
15秒前
orixero应助psy采纳,获得30
16秒前
充电宝应助儒雅的威采纳,获得10
18秒前
CodeCraft应助菲菲采纳,获得10
19秒前
19秒前
毛豆应助QI采纳,获得10
20秒前
ZHANG完成签到 ,获得积分10
20秒前
Ecc完成签到 ,获得积分10
21秒前
hengwang发布了新的文献求助10
24秒前
青青子衿发布了新的文献求助10
26秒前
28秒前
小王发布了新的文献求助30
29秒前
29秒前
嗯哼应助科研通管家采纳,获得20
30秒前
汉堡包应助科研通管家采纳,获得10
30秒前
双黄应助科研通管家采纳,获得10
30秒前
斯文败类应助科研通管家采纳,获得10
30秒前
一一应助科研通管家采纳,获得10
30秒前
情怀应助科研通管家采纳,获得10
30秒前
Akim应助科研通管家采纳,获得10
30秒前
长河完成签到,获得积分20
31秒前
酷波er应助科研通管家采纳,获得10
31秒前
李爱国应助科研通管家采纳,获得10
31秒前
嗯哼应助科研通管家采纳,获得20
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267812
求助须知:如何正确求助?哪些是违规求助? 2907217
关于积分的说明 8341064
捐赠科研通 2577922
什么是DOI,文献DOI怎么找? 1401276
科研通“疑难数据库(出版商)”最低求助积分说明 655022
邀请新用户注册赠送积分活动 634046