URRNet: A Unified Relational Reasoning Network for Vehicle Re-Identification

计算机科学 图形 人工智能 卷积神经网络 特征(语言学) 特征学习 语义学(计算机科学) 一般化 代表(政治) 机器学习 数据挖掘 理论计算机科学 数学 政治 语言学 数学分析 哲学 程序设计语言 法学 政治学
作者
Jiuchao Qian,Minting Pan,Wei Tong,Rob Law,Edmond Q. Wu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (9): 11156-11168 被引量:16
标识
DOI:10.1109/tvt.2023.3262983
摘要

With the continuous improvement and optimization of security monitoring networks, vehicle Re-Identification (Re-ID) becomes an emerging key technology in the development of intelligent visual surveillance systems. Due to the influence of viewpoint variation and fine-grained differences, vehicle Re-ID is still a research topic worth investigating. To alleviate above problems, a novel end-to-end framework named Unified Relational Reasoning Network (URRNet) is proposed in this paper, which integrates global features with local features to obtain better recognition accuracy. For the proposed framework, to understand the overall semantics of the image, an algorithm based on the global feature graph-structure learning is designed. The pixel-level feature maps are transformed to the node features of graph in the interactive space by projection, then graph reasoning is performed by using the graph convolutional network to improve the representation of global features. Moreover, an algorithm based on multi-scale local feature relational reasoning is designed. Using keypoint and viewpoint to obtain the multi-scale partial characteristics of the vehicle, and the vehicle multi-view features are learned from the single-view vehicle images through relational reasoning and attention mechanism. The two algorithms are combined to obtain the overall model, which not only preserves the details of the vehicle, but also effectively solves the problem of viewpoint variation. Comprehensive experimental results on two public datasets (VeRi-776 and VehicleID) indicate that the proposed URRNet can practically improve the model's representation ability and generalization ability, which is comparable to the state-of-the-art vehicle Re-ID methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jenningseastera举报FartKing求助涉嫌违规
1秒前
量子星尘发布了新的文献求助10
2秒前
可研小冲发布了新的文献求助10
3秒前
刘志娇完成签到,获得积分20
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
猪猪hero应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
djiwisksk66应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
情怀应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
欧阳完成签到,获得积分10
10秒前
flow完成签到,获得积分10
10秒前
11秒前
11秒前
郑恒松完成签到,获得积分10
12秒前
pluto应助许志森采纳,获得10
13秒前
Jasper应助柔弱的马里奥采纳,获得10
15秒前
郑恒松发布了新的文献求助10
16秒前
16秒前
hnxxangel完成签到,获得积分10
17秒前
张杰完成签到,获得积分10
18秒前
无花果应助酷酷绿兰采纳,获得10
18秒前
拼搏的潘子完成签到,获得积分10
19秒前
fafa完成签到 ,获得积分10
19秒前
无奈的黑猫完成签到,获得积分20
21秒前
田様应助Steve采纳,获得10
22秒前
22秒前
天天快乐应助郑恒松采纳,获得10
23秒前
23秒前
刘志娇发布了新的文献求助10
24秒前
科目三应助无奈的黑猫采纳,获得20
26秒前
乐乐应助嘎嘣脆采纳,获得10
26秒前
27秒前
27秒前
苏瑾深完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124469
捐赠科研通 3237323
什么是DOI,文献DOI怎么找? 1789046
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844