Machine learning-based prediction of cerebral hemorrhage in patients with hemodialysis: A multicenter, retrospective study

血液透析 医学 逻辑回归 肾脏疾病 终末期肾病 脑出血 朴素贝叶斯分类器 机器学习 人工智能 支持向量机 内科学 重症监护医学 计算机科学 蛛网膜下腔出血
作者
Fengda Li,Anmin Chen,Zeyi Li,Longyuan Gu,Qiyang Pan,Pan Wang,Yue-chao Fan,Jinhong Feng
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:14 被引量:4
标识
DOI:10.3389/fneur.2023.1139096
摘要

Intracerebral hemorrhage (ICH) is one of the most serious complications in patients with chronic kidney disease undergoing long-term hemodialysis. It has high mortality and disability rates and imposes a serious economic burden on the patient's family and society. An early prediction of ICH is essential for timely intervention and improving prognosis. This study aims to build an interpretable machine learning-based model to predict the risk of ICH in patients undergoing hemodialysis.The clinical data of 393 patients with end-stage kidney disease undergoing hemodialysis at three different centers between August 2014 and August 2022 were retrospectively analyzed. A total of 70% of the samples were randomly selected as the training set, and the remaining 30% were used as the validation set. Five machine learning (ML) algorithms, namely, support vector machine (SVM), extreme gradient boosting (XGB), complement Naïve Bayes (CNB), K-nearest neighbor (KNN), and logistic regression (LR), were used to develop a model to predict the risk of ICH in patients with uremia undergoing long-term hemodialysis. In addition, the area under the curve (AUC) values were evaluated to compare the performance of each algorithmic model. Global and individual interpretive analyses of the model were performed using importance ranking and Shapley additive explanations (SHAP) in the training set.A total of 73 patients undergoing hemodialysis developed spontaneous ICH among the 393 patients included in the study. The AUC of SVM, CNB, KNN, LR, and XGB models in the validation dataset were 0.725 (95% CI: 0.610 ~ 0.841), 0.797 (95% CI: 0.690 ~ 0.905), 0.675 (95% CI: 0.560 ~ 0.789), 0.922 (95% CI: 0.862 ~ 0.981), and 0.979 (95% CI: 0.953 ~ 1.000), respectively. Therefore, the XGBoost model had the best performance among the five algorithms. SHAP analysis revealed that the levels of LDL, HDL, CRP, and HGB and pre-hemodialysis blood pressure were the most important factors.The XGB model developed in this study can efficiently predict the risk of a cerebral hemorrhage in patients with uremia undergoing long-term hemodialysis and can help clinicians to make more individualized and rational clinical decisions. ICH events in patients undergoing maintenance hemodialysis (MHD) are associated with serum LDL, HDL, CRP, HGB, and pre-hemodialysis SBP levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风息完成签到,获得积分10
刚刚
刚刚
Nico完成签到,获得积分20
1秒前
李健的小迷弟应助星辰采纳,获得10
5秒前
JohnLemon发布了新的文献求助10
6秒前
6秒前
英勇的水壶完成签到,获得积分20
6秒前
8秒前
10秒前
乐乐应助漂亮的人生采纳,获得10
10秒前
云海发布了新的文献求助10
11秒前
隐形曼青应助简单如容采纳,获得10
11秒前
13秒前
14秒前
ANNI发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助千年一梦采纳,获得10
15秒前
72完成签到 ,获得积分10
15秒前
insissst完成签到,获得积分10
16秒前
Maosha完成签到,获得积分20
16秒前
Metbutterly完成签到,获得积分10
17秒前
韩尚宁发布了新的文献求助20
18秒前
城123发布了新的文献求助10
20秒前
墨1234完成签到,获得积分10
21秒前
樊香彤完成签到,获得积分10
22秒前
丘比特应助3424923462采纳,获得10
24秒前
在水一方应助HDD采纳,获得10
24秒前
seven完成签到,获得积分10
24秒前
ding应助小白采纳,获得10
25秒前
25秒前
25秒前
wZx完成签到,获得积分20
27秒前
oceanao应助fdw采纳,获得10
27秒前
hujin完成签到,获得积分10
28秒前
是小曾啊发布了新的文献求助30
29秒前
29秒前
evilhag发布了新的文献求助10
32秒前
pragmatic发布了新的文献求助10
32秒前
江边鸟完成签到 ,获得积分10
33秒前
哈哈完成签到,获得积分20
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163348
求助须知:如何正确求助?哪些是违规求助? 2814206
关于积分的说明 7903775
捐赠科研通 2473774
什么是DOI,文献DOI怎么找? 1317050
科研通“疑难数据库(出版商)”最低求助积分说明 631614
版权声明 602187