Machine learning-based prediction of cerebral hemorrhage in patients with hemodialysis: A multicenter, retrospective study

血液透析 医学 逻辑回归 肾脏疾病 终末期肾病 脑出血 朴素贝叶斯分类器 机器学习 人工智能 支持向量机 内科学 重症监护医学 计算机科学 蛛网膜下腔出血
作者
Fengda Li,Anmin Chen,Zeyi Li,Longyuan Gu,Qiyang Pan,Pan Wang,Yue-chao Fan,Jinhong Feng
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:14 被引量:6
标识
DOI:10.3389/fneur.2023.1139096
摘要

Intracerebral hemorrhage (ICH) is one of the most serious complications in patients with chronic kidney disease undergoing long-term hemodialysis. It has high mortality and disability rates and imposes a serious economic burden on the patient's family and society. An early prediction of ICH is essential for timely intervention and improving prognosis. This study aims to build an interpretable machine learning-based model to predict the risk of ICH in patients undergoing hemodialysis.The clinical data of 393 patients with end-stage kidney disease undergoing hemodialysis at three different centers between August 2014 and August 2022 were retrospectively analyzed. A total of 70% of the samples were randomly selected as the training set, and the remaining 30% were used as the validation set. Five machine learning (ML) algorithms, namely, support vector machine (SVM), extreme gradient boosting (XGB), complement Naïve Bayes (CNB), K-nearest neighbor (KNN), and logistic regression (LR), were used to develop a model to predict the risk of ICH in patients with uremia undergoing long-term hemodialysis. In addition, the area under the curve (AUC) values were evaluated to compare the performance of each algorithmic model. Global and individual interpretive analyses of the model were performed using importance ranking and Shapley additive explanations (SHAP) in the training set.A total of 73 patients undergoing hemodialysis developed spontaneous ICH among the 393 patients included in the study. The AUC of SVM, CNB, KNN, LR, and XGB models in the validation dataset were 0.725 (95% CI: 0.610 ~ 0.841), 0.797 (95% CI: 0.690 ~ 0.905), 0.675 (95% CI: 0.560 ~ 0.789), 0.922 (95% CI: 0.862 ~ 0.981), and 0.979 (95% CI: 0.953 ~ 1.000), respectively. Therefore, the XGBoost model had the best performance among the five algorithms. SHAP analysis revealed that the levels of LDL, HDL, CRP, and HGB and pre-hemodialysis blood pressure were the most important factors.The XGB model developed in this study can efficiently predict the risk of a cerebral hemorrhage in patients with uremia undergoing long-term hemodialysis and can help clinicians to make more individualized and rational clinical decisions. ICH events in patients undergoing maintenance hemodialysis (MHD) are associated with serum LDL, HDL, CRP, HGB, and pre-hemodialysis SBP levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天发布了新的文献求助10
1秒前
1秒前
2秒前
揣一袋星星糖完成签到,获得积分10
2秒前
王阳完成签到,获得积分20
2秒前
shinn发布了新的文献求助10
3秒前
Ranch0完成签到,获得积分10
3秒前
3秒前
开心快乐水完成签到 ,获得积分10
4秒前
领导范儿应助动听凌柏采纳,获得10
4秒前
眯眯眼的松鼠完成签到,获得积分10
4秒前
FashionBoy应助安输采纳,获得10
4秒前
5秒前
坦率导师sw完成签到,获得积分10
5秒前
lzy发布了新的文献求助10
5秒前
五六七完成签到,获得积分10
5秒前
田様应助有害学术辣鸡采纳,获得10
6秒前
6秒前
6秒前
陌人归完成签到 ,获得积分10
7秒前
专注雨珍完成签到,获得积分10
7秒前
wy.he应助结实大雁采纳,获得10
8秒前
8秒前
科研通AI6.1应助鲜艳的遥采纳,获得10
8秒前
彭新铭完成签到,获得积分10
8秒前
Charles_Rowan发布了新的文献求助10
8秒前
科目三应助阿皓要发nature采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
草莓熊发布了新的文献求助10
9秒前
无花果应助wmzskye采纳,获得10
9秒前
SciGPT应助MOMO采纳,获得10
9秒前
Xin完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
Hello应助zzt采纳,获得10
11秒前
Herisland发布了新的文献求助10
11秒前
su发布了新的文献求助10
11秒前
科研通AI6.1应助richael采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776395
求助须知:如何正确求助?哪些是违规求助? 5629084
关于积分的说明 15442414
捐赠科研通 4908542
什么是DOI,文献DOI怎么找? 2641276
邀请新用户注册赠送积分活动 1589232
关于科研通互助平台的介绍 1543882