Machine learning-based prediction of cerebral hemorrhage in patients with hemodialysis: A multicenter, retrospective study

血液透析 医学 逻辑回归 肾脏疾病 终末期肾病 脑出血 朴素贝叶斯分类器 机器学习 人工智能 支持向量机 内科学 重症监护医学 计算机科学 蛛网膜下腔出血
作者
Fengda Li,Anmin Chen,Zeyi Li,Longyuan Gu,Qiyang Pan,Pan Wang,Yue-chao Fan,Jinhong Feng
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:14 被引量:6
标识
DOI:10.3389/fneur.2023.1139096
摘要

Intracerebral hemorrhage (ICH) is one of the most serious complications in patients with chronic kidney disease undergoing long-term hemodialysis. It has high mortality and disability rates and imposes a serious economic burden on the patient's family and society. An early prediction of ICH is essential for timely intervention and improving prognosis. This study aims to build an interpretable machine learning-based model to predict the risk of ICH in patients undergoing hemodialysis.The clinical data of 393 patients with end-stage kidney disease undergoing hemodialysis at three different centers between August 2014 and August 2022 were retrospectively analyzed. A total of 70% of the samples were randomly selected as the training set, and the remaining 30% were used as the validation set. Five machine learning (ML) algorithms, namely, support vector machine (SVM), extreme gradient boosting (XGB), complement Naïve Bayes (CNB), K-nearest neighbor (KNN), and logistic regression (LR), were used to develop a model to predict the risk of ICH in patients with uremia undergoing long-term hemodialysis. In addition, the area under the curve (AUC) values were evaluated to compare the performance of each algorithmic model. Global and individual interpretive analyses of the model were performed using importance ranking and Shapley additive explanations (SHAP) in the training set.A total of 73 patients undergoing hemodialysis developed spontaneous ICH among the 393 patients included in the study. The AUC of SVM, CNB, KNN, LR, and XGB models in the validation dataset were 0.725 (95% CI: 0.610 ~ 0.841), 0.797 (95% CI: 0.690 ~ 0.905), 0.675 (95% CI: 0.560 ~ 0.789), 0.922 (95% CI: 0.862 ~ 0.981), and 0.979 (95% CI: 0.953 ~ 1.000), respectively. Therefore, the XGBoost model had the best performance among the five algorithms. SHAP analysis revealed that the levels of LDL, HDL, CRP, and HGB and pre-hemodialysis blood pressure were the most important factors.The XGB model developed in this study can efficiently predict the risk of a cerebral hemorrhage in patients with uremia undergoing long-term hemodialysis and can help clinicians to make more individualized and rational clinical decisions. ICH events in patients undergoing maintenance hemodialysis (MHD) are associated with serum LDL, HDL, CRP, HGB, and pre-hemodialysis SBP levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111发布了新的文献求助10
刚刚
1秒前
松林发布了新的文献求助10
2秒前
李狗蛋完成签到 ,获得积分10
3秒前
坚强百招关注了科研通微信公众号
3秒前
Jing完成签到,获得积分10
4秒前
深情安青应助scanker1981采纳,获得30
5秒前
无花果应助yqsf789采纳,获得10
6秒前
英俊的铭应助均儒采纳,获得10
7秒前
7秒前
陈宝妮完成签到,获得积分10
7秒前
6菲完成签到,获得积分10
8秒前
ling完成签到,获得积分10
8秒前
王耀武完成签到,获得积分10
8秒前
图图完成签到,获得积分10
8秒前
Medicovv发布了新的文献求助10
9秒前
简单的可乐完成签到,获得积分10
10秒前
12秒前
xiaoyu发布了新的文献求助10
12秒前
文静的摩托完成签到,获得积分10
13秒前
14秒前
SciGPT应助sillyforce采纳,获得10
14秒前
16秒前
完美世界应助kekekeke采纳,获得10
17秒前
哦哦完成签到 ,获得积分10
17秒前
清栀发布了新的文献求助10
18秒前
wjp发布了新的文献求助20
18秒前
23秒前
Medicovv完成签到,获得积分10
23秒前
23秒前
ymx关注了科研通微信公众号
26秒前
浮游应助Philip采纳,获得10
26秒前
含糊的葶完成签到,获得积分10
26秒前
27秒前
zyn完成签到,获得积分10
28秒前
科研通AI2S应助感动的念双采纳,获得10
29秒前
29秒前
31秒前
tutu发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307071
求助须知:如何正确求助?哪些是违规求助? 4452821
关于积分的说明 13855266
捐赠科研通 4340389
什么是DOI,文献DOI怎么找? 2383146
邀请新用户注册赠送积分活动 1378006
关于科研通互助平台的介绍 1345825