Machine learning-based prediction of cerebral hemorrhage in patients with hemodialysis: A multicenter, retrospective study

血液透析 医学 逻辑回归 肾脏疾病 终末期肾病 脑出血 朴素贝叶斯分类器 机器学习 人工智能 支持向量机 内科学 重症监护医学 计算机科学 蛛网膜下腔出血
作者
Fengda Li,Anmin Chen,Zeyi Li,Longyuan Gu,Qiyang Pan,Pan Wang,Yue-chao Fan,Jinhong Feng
出处
期刊:Frontiers in Neurology [Frontiers Media]
卷期号:14 被引量:4
标识
DOI:10.3389/fneur.2023.1139096
摘要

Intracerebral hemorrhage (ICH) is one of the most serious complications in patients with chronic kidney disease undergoing long-term hemodialysis. It has high mortality and disability rates and imposes a serious economic burden on the patient's family and society. An early prediction of ICH is essential for timely intervention and improving prognosis. This study aims to build an interpretable machine learning-based model to predict the risk of ICH in patients undergoing hemodialysis.The clinical data of 393 patients with end-stage kidney disease undergoing hemodialysis at three different centers between August 2014 and August 2022 were retrospectively analyzed. A total of 70% of the samples were randomly selected as the training set, and the remaining 30% were used as the validation set. Five machine learning (ML) algorithms, namely, support vector machine (SVM), extreme gradient boosting (XGB), complement Naïve Bayes (CNB), K-nearest neighbor (KNN), and logistic regression (LR), were used to develop a model to predict the risk of ICH in patients with uremia undergoing long-term hemodialysis. In addition, the area under the curve (AUC) values were evaluated to compare the performance of each algorithmic model. Global and individual interpretive analyses of the model were performed using importance ranking and Shapley additive explanations (SHAP) in the training set.A total of 73 patients undergoing hemodialysis developed spontaneous ICH among the 393 patients included in the study. The AUC of SVM, CNB, KNN, LR, and XGB models in the validation dataset were 0.725 (95% CI: 0.610 ~ 0.841), 0.797 (95% CI: 0.690 ~ 0.905), 0.675 (95% CI: 0.560 ~ 0.789), 0.922 (95% CI: 0.862 ~ 0.981), and 0.979 (95% CI: 0.953 ~ 1.000), respectively. Therefore, the XGBoost model had the best performance among the five algorithms. SHAP analysis revealed that the levels of LDL, HDL, CRP, and HGB and pre-hemodialysis blood pressure were the most important factors.The XGB model developed in this study can efficiently predict the risk of a cerebral hemorrhage in patients with uremia undergoing long-term hemodialysis and can help clinicians to make more individualized and rational clinical decisions. ICH events in patients undergoing maintenance hemodialysis (MHD) are associated with serum LDL, HDL, CRP, HGB, and pre-hemodialysis SBP levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
今后应助Umar采纳,获得10
1秒前
英俊秋白完成签到,获得积分10
2秒前
rio发布了新的文献求助10
2秒前
自由语柳完成签到,获得积分20
3秒前
素简发布了新的文献求助10
3秒前
伴奏小胖发布了新的文献求助10
3秒前
wqq发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
jia0完成签到,获得积分10
5秒前
赘婿应助Sosoxu采纳,获得10
7秒前
脑洞疼应助楠楠采纳,获得10
7秒前
运敬完成签到 ,获得积分10
8秒前
机灵的冰珍完成签到,获得积分10
9秒前
亦绿发布了新的文献求助10
10秒前
11秒前
14秒前
小巧的傲易完成签到,获得积分10
15秒前
halogen发布了新的文献求助10
16秒前
sohee完成签到 ,获得积分20
16秒前
大气颜演完成签到,获得积分20
17秒前
bkagyin应助素简采纳,获得10
17秒前
英俊秋白发布了新的文献求助10
17秒前
zz完成签到,获得积分10
18秒前
王优秀完成签到,获得积分10
19秒前
19秒前
YangTzeePlus发布了新的文献求助10
20秒前
因一完成签到,获得积分10
21秒前
111完成签到,获得积分10
21秒前
NexusExplorer应助BANG采纳,获得10
21秒前
大气颜演发布了新的文献求助10
25秒前
25秒前
28秒前
CipherSage应助科西西采纳,获得10
30秒前
迅速冥茗发布了新的文献求助10
30秒前
30秒前
罗小罗同学完成签到,获得积分10
30秒前
静时完成签到,获得积分10
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182