清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Ambient and wearable system for workers’ stress evaluation

可穿戴计算机 计算机科学 背景(考古学) 人工智能 机器学习 噪音(视频) 无监督学习 嵌入式系统 人机交互 生物 图像(数学) 古生物学
作者
Gabriele Rescio,Andrea Manni,Andrea Caroppo,Marianna Ciccarelli,Alessandra Papetti,Alessandro Leone
出处
期刊:Computers in Industry [Elsevier]
卷期号:148: 103905-103905 被引量:6
标识
DOI:10.1016/j.compind.2023.103905
摘要

The paradigm of Industry 4.0 involves fully automated and interconnected industrial production processes demanding a great deal of human-machine interaction. This implies the emergence of new problems related to the stress assessment of workers operating in new and more complex work contexts. To address this need, it may be important to implement automated stress detection platform designed to be effective in a real-world work setting. Many works in the literature deal with the stress evaluation topic, they use above all wearable systems that are often intrusive and subject to noise and artifacts that degrade performance. Moreover, most of them integrate supervised machine learning algorithms, which achieve high levels of detection accuracy, but require a complicated training phase, which might not be suitable in a real-world context. To reduce these limitations, a stress detection platform combining data from a wearable and an environmental system is presented in this paper. It analyses heart rate, galvanic skin response and camera RGB signals. The wearable device was designed to be minimally invasive with good signal stability and low noise, while a commercial camera was added to improve the performance of the whole hardware architecture. From the software perspective, the presented solution was first tested and validated using a supervised approach. Subsequently, attention was focused on the analysis and development of an unsupervised solution, implementing three unsupervised algorithms. The best performance was obtained with the Gaussian Mixture Model having an accuracy of 77.4% considering one level of stress and 75.1% with two levels of stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33秒前
36秒前
42秒前
欢呼亦绿完成签到,获得积分10
47秒前
1分钟前
小孙失策了完成签到 ,获得积分10
1分钟前
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
LPPQBB应助科研通管家采纳,获得80
1分钟前
zizideng完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
随心所欲完成签到 ,获得积分10
3分钟前
3分钟前
nbtzy完成签到,获得积分10
3分钟前
3分钟前
3分钟前
宅心仁厚完成签到 ,获得积分10
3分钟前
3分钟前
精明寒松完成签到 ,获得积分10
3分钟前
半喇柯基发布了新的文献求助10
4分钟前
Gary完成签到 ,获得积分10
5分钟前
Demi_Ming完成签到,获得积分10
5分钟前
5分钟前
fhw完成签到 ,获得积分10
5分钟前
aero完成签到 ,获得积分10
5分钟前
5分钟前
SCH_zhu发布了新的文献求助10
5分钟前
SCH_zhu完成签到,获得积分10
5分钟前
Criminology34完成签到,获得积分0
6分钟前
John完成签到,获得积分10
6分钟前
6分钟前
大西发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303286
求助须知:如何正确求助?哪些是违规求助? 4450158
关于积分的说明 13849104
捐赠科研通 4336792
什么是DOI,文献DOI怎么找? 2381094
邀请新用户注册赠送积分活动 1376083
关于科研通互助平台的介绍 1342675