亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ambient and wearable system for workers’ stress evaluation

可穿戴计算机 计算机科学 背景(考古学) 人工智能 机器学习 噪音(视频) 无监督学习 嵌入式系统 人机交互 生物 图像(数学) 古生物学
作者
Gabriele Rescio,Andrea Manni,Andrea Caroppo,Marianna Ciccarelli,Alessandra Papetti,Alessandro Leone
出处
期刊:Computers in Industry [Elsevier]
卷期号:148: 103905-103905 被引量:6
标识
DOI:10.1016/j.compind.2023.103905
摘要

The paradigm of Industry 4.0 involves fully automated and interconnected industrial production processes demanding a great deal of human-machine interaction. This implies the emergence of new problems related to the stress assessment of workers operating in new and more complex work contexts. To address this need, it may be important to implement automated stress detection platform designed to be effective in a real-world work setting. Many works in the literature deal with the stress evaluation topic, they use above all wearable systems that are often intrusive and subject to noise and artifacts that degrade performance. Moreover, most of them integrate supervised machine learning algorithms, which achieve high levels of detection accuracy, but require a complicated training phase, which might not be suitable in a real-world context. To reduce these limitations, a stress detection platform combining data from a wearable and an environmental system is presented in this paper. It analyses heart rate, galvanic skin response and camera RGB signals. The wearable device was designed to be minimally invasive with good signal stability and low noise, while a commercial camera was added to improve the performance of the whole hardware architecture. From the software perspective, the presented solution was first tested and validated using a supervised approach. Subsequently, attention was focused on the analysis and development of an unsupervised solution, implementing three unsupervised algorithms. The best performance was obtained with the Gaussian Mixture Model having an accuracy of 77.4% considering one level of stress and 75.1% with two levels of stress.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
7秒前
浮岫发布了新的文献求助10
9秒前
浮岫完成签到 ,获得积分10
21秒前
25秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
30秒前
31秒前
rebeycca发布了新的文献求助10
37秒前
奋斗的马里奥完成签到,获得积分10
52秒前
量子星尘发布了新的文献求助10
1分钟前
lei完成签到,获得积分20
1分钟前
跳跃紫真完成签到,获得积分10
1分钟前
CodeCraft应助lei采纳,获得10
1分钟前
大玉124完成签到 ,获得积分10
2分钟前
2分钟前
刘菲特1发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
yr应助科研通管家采纳,获得10
2分钟前
co完成签到,获得积分10
2分钟前
gszy1975发布了新的文献求助10
2分钟前
香蕉觅云应助飞常爱你哦采纳,获得10
2分钟前
2分钟前
2分钟前
跳跃紫真发布了新的文献求助10
2分钟前
LeeHx完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
桃子e发布了新的文献求助10
3分钟前
德芙纵向丝滑完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439