Ambient and wearable system for workers’ stress evaluation

可穿戴计算机 计算机科学 背景(考古学) 人工智能 机器学习 噪音(视频) 无监督学习 嵌入式系统 人机交互 古生物学 图像(数学) 生物
作者
Gabriele Rescio,Andrea Manni,Andrea Caroppo,Marianna Ciccarelli,Alessandra Papetti,Alessandro Leone
出处
期刊:Computers in Industry [Elsevier]
卷期号:148: 103905-103905 被引量:6
标识
DOI:10.1016/j.compind.2023.103905
摘要

The paradigm of Industry 4.0 involves fully automated and interconnected industrial production processes demanding a great deal of human-machine interaction. This implies the emergence of new problems related to the stress assessment of workers operating in new and more complex work contexts. To address this need, it may be important to implement automated stress detection platform designed to be effective in a real-world work setting. Many works in the literature deal with the stress evaluation topic, they use above all wearable systems that are often intrusive and subject to noise and artifacts that degrade performance. Moreover, most of them integrate supervised machine learning algorithms, which achieve high levels of detection accuracy, but require a complicated training phase, which might not be suitable in a real-world context. To reduce these limitations, a stress detection platform combining data from a wearable and an environmental system is presented in this paper. It analyses heart rate, galvanic skin response and camera RGB signals. The wearable device was designed to be minimally invasive with good signal stability and low noise, while a commercial camera was added to improve the performance of the whole hardware architecture. From the software perspective, the presented solution was first tested and validated using a supervised approach. Subsequently, attention was focused on the analysis and development of an unsupervised solution, implementing three unsupervised algorithms. The best performance was obtained with the Gaussian Mixture Model having an accuracy of 77.4% considering one level of stress and 75.1% with two levels of stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莱雅lyre完成签到,获得积分10
刚刚
科研通AI2S应助Nini1203采纳,获得10
刚刚
lxl1996完成签到,获得积分10
刚刚
1秒前
Lucas应助猕猴桃汁er采纳,获得10
1秒前
世事如书发布了新的文献求助10
2秒前
豆子完成签到,获得积分10
2秒前
研友_Z1eDgZ发布了新的文献求助10
2秒前
冰咖啡完成签到,获得积分10
2秒前
斯文败类应助yaohan1121采纳,获得10
2秒前
xxxx完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助你不知道采纳,获得10
2秒前
fsf完成签到,获得积分10
3秒前
pengpeng发布了新的文献求助10
3秒前
陈老太完成签到 ,获得积分10
3秒前
3秒前
FashionBoy应助耶耶采纳,获得10
3秒前
4秒前
5秒前
彭于晏应助柚子采纳,获得10
5秒前
6秒前
lucky发布了新的文献求助10
6秒前
高震博完成签到 ,获得积分10
6秒前
6秒前
树袋熊发布了新的文献求助10
6秒前
小油菜完成签到 ,获得积分10
6秒前
唯美完成签到,获得积分20
7秒前
叉叉茶发布了新的文献求助10
7秒前
世事如书完成签到,获得积分10
8秒前
吴家小世界完成签到,获得积分20
8秒前
Chenzhs完成签到,获得积分10
8秒前
9秒前
Dailei完成签到,获得积分10
9秒前
Pana完成签到,获得积分10
10秒前
10秒前
xue发布了新的文献求助10
10秒前
才哥发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567