Degradation phenomena of quantum dot light-emitting diodes induced by high electric field

材料科学 降级(电信) 电场 量子点 光电子学 二极管 领域(数学) 发光二极管 工程物理 电气工程 数学 量子力学 物理 工程类 纯数学
作者
Yunmi Cha,Hwi Je Woo,Sang Hyun Yoon,Young Jae Song,Young Jin Choi,Seong Heon Kim
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:34 (26): 265705-265705 被引量:1
标识
DOI:10.1088/1361-6528/acc871
摘要

Quantum dots possess exceptional optoelectronic properties, such as narrow bandwidth, controllable wavelength, and compatibility with solution-based processing. However, for efficient and stable operation in electroluminescence mode, several issues require resolution. Particularly, as device dimensions decrease, a higher electric field may be applied through next-generation quantum dot light-emitting diode (QLED) devices, which could further degrade the device. In this study, we conduct a systematic analysis of the degradation phenomena of a QLED device induced by a high electric field, using scanning probe microscopy (SPM) and transmission electron microscopy (TEM). We apply a local high electric field to the surface of a QLED device using an atomic force microscopy (AFM) tip, and we investigate changes in morphology and work function in the Kelvin probe force microscopy mode. After the SPM experiments, we perform TEM measurements on the same degraded sample area affected by the electric field of the AFM tip. The results indicate that a QLED device could be mechanically degraded by a high electric field, and work function changes significantly in degraded areas. In addition, the TEM measurements reveal that In ions migrate from the indium tin oxide (ITO) bottom electrode to the top of the QLED device. The ITO bottom electrode also deforms significantly, which could induce work function variation. The systematic approach adopted in this study can provide a suitable methodology for investigating the degradation phenomena of various optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lishanner完成签到,获得积分10
刚刚
超级的尔竹完成签到,获得积分10
1秒前
细腻的梦之完成签到,获得积分20
2秒前
2秒前
2秒前
vampire完成签到,获得积分10
2秒前
lishanner发布了新的文献求助10
2秒前
八九完成签到,获得积分10
3秒前
3秒前
liuhui发布了新的文献求助10
3秒前
王闪闪完成签到,获得积分10
5秒前
5秒前
zhang完成签到,获得积分10
5秒前
斯文败类应助小点点采纳,获得10
7秒前
FashionBoy应助Nolan采纳,获得10
7秒前
shua发布了新的文献求助10
8秒前
苯环发布了新的文献求助10
8秒前
星流xx发布了新的文献求助10
8秒前
9秒前
小恐龙完成签到,获得积分10
9秒前
无奈书包完成签到,获得积分10
10秒前
小张完成签到,获得积分10
10秒前
11秒前
竹子完成签到,获得积分10
11秒前
可爱的函函应助王小小采纳,获得10
11秒前
11秒前
12秒前
一二三发布了新的文献求助10
12秒前
毛豆应助平家boy采纳,获得10
12秒前
乐乐应助精明曼荷采纳,获得10
13秒前
er发布了新的文献求助10
13秒前
13秒前
13秒前
光头肥勤发布了新的文献求助10
15秒前
15秒前
15秒前
美好斓发布了新的文献求助20
15秒前
17秒前
EZIO发布了新的文献求助10
17秒前
123完成签到,获得积分20
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313097
求助须知:如何正确求助?哪些是违规求助? 2945429
关于积分的说明 8525436
捐赠科研通 2621185
什么是DOI,文献DOI怎么找? 1433427
科研通“疑难数据库(出版商)”最低求助积分说明 664974
邀请新用户注册赠送积分活动 650465