Shadow Enhancement Using 2D Dynamic Stochastic Resonance for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 影子(心理学) 卷积神经网络 模式识别(心理学) 冗余(工程) 像素 空间分析 计算机视觉 频道(广播) 遥感 地理 电信 心理学 操作系统 心理治疗师
作者
Qiuyue Liu,Min Fu,Xuefeng Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (7): 1820-1820
标识
DOI:10.3390/rs15071820
摘要

With the development of remote sensing technology, classification has become a meaningful way to explore the rich information in hyperspectral images (HSIs). However, various environmental factors may cause noise and shadow areas in HSIs, resulting in weak signals and difficulties in fully utilizing information. In addition, classification methods based on deep learning have made considerable progress, but features extracted from most networks have much redundancy. Therefore, a method based on two-dimensional dynamic stochastic resonance (2D DSR) shadow enhancement and convolutional neural network (CNN) classification combined with an attention mechanism (AM) for HSIs is proposed in this paper. Firstly, to protect the spatial correlation of HSIs, an iterative equation of 2D DSR based on the pixel neighborhood relationship was derived, which made it possible to perform matrix SR in the spatial dimension of the image, instead of one-dimensional vector resonance. Secondly, by using the noise in the shadow area to generate resonance, 2D DSR can help increase the signals in the shadow regions by preserving the spatial characteristics, and enhanced HSIs can be obtained. Then, a 3DCNN embedded with two efficient channel attention (ECA) modules and one convolutional block attention module (CBAM) was designed to make the most of critical features that significantly affect the classification accuracy by giving different weights. Finally, the performance of the proposed method was evaluated on a real-world HSI, and comparative studies were carried out. The experimental results showed that the proposed approach has promising prospects in HSIs’ shadow enhancement and information mining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助smj采纳,获得10
刚刚
传奇3应助比目鱼采纳,获得10
刚刚
欢呼宛秋完成签到 ,获得积分10
刚刚
刚刚
调皮的老王头完成签到,获得积分10
1秒前
gjd123发布了新的文献求助10
1秒前
1秒前
Wee发布了新的文献求助10
2秒前
包子发布了新的文献求助100
2秒前
科研通AI2S应助孟缇采纳,获得10
2秒前
2秒前
livresse发布了新的文献求助10
2秒前
3秒前
3秒前
勤恳的以彤完成签到,获得积分20
3秒前
longtengfei发布了新的文献求助10
4秒前
逃跑快人一步完成签到 ,获得积分10
4秒前
欢呼宛秋关注了科研通微信公众号
4秒前
4秒前
烟花应助咕咕采纳,获得10
5秒前
5秒前
5秒前
小绵羊发布了新的文献求助10
5秒前
Lucas应助yy采纳,获得10
5秒前
迷路灵槐完成签到,获得积分10
5秒前
zhaobo发布了新的文献求助10
6秒前
6秒前
mnliao完成签到,获得积分10
6秒前
脑壳疼发布了新的文献求助10
6秒前
6秒前
火之神神乐完成签到,获得积分20
6秒前
科研通AI5应助啦啦采纳,获得30
6秒前
tesla发布了新的文献求助10
6秒前
balko发布了新的文献求助10
6秒前
7秒前
ymczj123完成签到,获得积分20
7秒前
DONNYTIO发布了新的文献求助30
7秒前
雷半双完成签到,获得积分10
8秒前
8秒前
SciGPT应助橘子味汽水采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553582
求助须知:如何正确求助?哪些是违规求助? 3129521
关于积分的说明 9382550
捐赠科研通 2828636
什么是DOI,文献DOI怎么找? 1555065
邀请新用户注册赠送积分活动 725800
科研通“疑难数据库(出版商)”最低求助积分说明 715212