Deep Learning With an Attention Mechanism for Differentiating the Origin of Brain Metastasis Using MR images

医学 肺癌 脑转移 接收机工作特性 癌症 流体衰减反转恢复 乳腺癌 磁共振成像 转移 人口 放射科 肿瘤科 内科学 核医学 环境卫生
作者
Tianyu Jiao,Fuyan Li,Yi Cui,Xiao Wang,Butuo Li,Feng Shi,Yuwei Xia,Qing Zhou,Qingshi Zeng
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1624-1635 被引量:24
标识
DOI:10.1002/jmri.28695
摘要

Background Brain metastasis (BM) is a serious neurological complication of cancer of different origins. The value of deep learning (DL) to identify multiple types of primary origins remains unclear. Purpose To distinguish primary site of BM and identify the best DL models. Study Type Retrospective. Population A total of 449 BM derived from 214 patients (49.5% for female, mean age 58 years) (100 from small cell lung cancer [SCLC], 125 from non‐small cell lung cancer [NSCLC], 116 from breast cancer [BC], and 108 from gastrointestinal cancer [GIC]) were included. Field Strength/Sequence A 3‐T, T1 turbo spin echo (T1‐TSE), T2‐TSE, T2FLAIR‐TSE, DWI echo‐planar imaging (DWI‐EPI) and contrast‐enhanced T1‐TSE (CE T1‐TSE). Assessment Lesions were divided into training ( n = 285, 153 patients), testing ( n = 122, 93 patients), and independent testing cohorts ( n = 42, 34 patients). Three‐dimensional residual network (3D‐ResNet), named 3D ResNet6 and 3D ResNet 18, was proposed for identifying the four origins based on single MRI and combined MRI (T1WI + T2‐FLAIR + DWI, CE‐T1WI + DWI, CE‐T1WI + T2WI + DWI). DL model was used to distinguish lung cancer from non‐lung cancer; then SCLC vs . NSCLC for lung cancer classification and BC vs. GIC for non‐lung cancer classification was performed. A subjective visual analysis was implemented and compared with DL models. Gradient‐weighted class activation mapping (Grad‐CAM) was used to visualize the model by heatmaps. Statistical Tests The area under the receiver operating characteristics curve (AUC) assess each classification performance. Results 3D ResNet18 with Grad‐CAM and AIC showed better performance than 3DResNet6, 3DResNet18 and the radiologist for distinguishing lung cancer from non‐lung cancer, SCLC from NSCLC, and BC from GIC. For single MRI sequence, T1WI, DWI, and CE‐T1WI performed best for lung cancer vs. non‐lung cancer, SCLC vs. NSCLC, and BC vs. GIC classifications. The AUC ranged from 0.675 to 0.876 and from 0.684 to 0.800 regarding the testing and independent testing datasets, respectively. For combined MRI sequences, the combination of CE‐T1WI + T2WI + DWI performed better for BC vs. GIC (AUCs of 0.788 and 0.848 on testing and independent testing datasets, respectively), while the combined MRI approach (T1WI + T2‐FLAIR + DWI, CE‐T1WI + DWI) could not achieve higher AUCs for lung cancer vs. non‐lung cancer, SCLC vs. NSCLC. Grad‐CAM helped for model visualization by heatmaps that focused on tumor regions. Data Conclusion DL models may help to distinguish the origins of BM based on MRI data. Evidence Level 3 Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助辣辣采纳,获得10
1秒前
2秒前
wanan发布了新的文献求助10
2秒前
乐生发布了新的文献求助10
3秒前
悠悠发布了新的文献求助10
3秒前
4秒前
lapin完成签到,获得积分10
4秒前
醉熏的宛筠完成签到,获得积分10
5秒前
安静发布了新的文献求助10
7秒前
科研通AI6应助wyt采纳,获得10
8秒前
chili完成签到,获得积分10
8秒前
9秒前
10秒前
乐生完成签到,获得积分10
13秒前
飞行器完成签到,获得积分10
14秒前
上善若水发布了新的文献求助10
14秒前
Carolna完成签到,获得积分10
15秒前
酷酷的匪发布了新的文献求助10
16秒前
17秒前
科目三应助阿莫仙采纳,获得10
18秒前
科研通AI6应助乾渊采纳,获得10
18秒前
冷酷愚志完成签到,获得积分10
18秒前
小蘑菇应助坦率德地采纳,获得20
19秒前
19秒前
20秒前
20秒前
李健应助不安的冷荷采纳,获得10
21秒前
田様应助吕佳蔚采纳,获得10
22秒前
23秒前
wxf发布了新的文献求助10
24秒前
26秒前
碎碎念发布了新的文献求助10
26秒前
26秒前
ding应助酷酷的匪采纳,获得10
28秒前
28秒前
29秒前
CC完成签到 ,获得积分10
30秒前
阿莫仙发布了新的文献求助10
30秒前
30秒前
充电宝应助刚睡醒采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841