Deep Learning With an Attention Mechanism for Differentiating the Origin of Brain Metastasis Using MR images

医学 肺癌 脑转移 接收机工作特性 癌症 流体衰减反转恢复 乳腺癌 磁共振成像 转移 人口 放射科 肿瘤科 内科学 核医学 环境卫生
作者
Tianyu Jiao,Fuyan Li,Yi Cui,Xiao Wang,Butuo Li,Feng Shi,Yuwei Xia,Qing Zhou,Qingshi Zeng
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1624-1635 被引量:24
标识
DOI:10.1002/jmri.28695
摘要

Background Brain metastasis (BM) is a serious neurological complication of cancer of different origins. The value of deep learning (DL) to identify multiple types of primary origins remains unclear. Purpose To distinguish primary site of BM and identify the best DL models. Study Type Retrospective. Population A total of 449 BM derived from 214 patients (49.5% for female, mean age 58 years) (100 from small cell lung cancer [SCLC], 125 from non‐small cell lung cancer [NSCLC], 116 from breast cancer [BC], and 108 from gastrointestinal cancer [GIC]) were included. Field Strength/Sequence A 3‐T, T1 turbo spin echo (T1‐TSE), T2‐TSE, T2FLAIR‐TSE, DWI echo‐planar imaging (DWI‐EPI) and contrast‐enhanced T1‐TSE (CE T1‐TSE). Assessment Lesions were divided into training ( n = 285, 153 patients), testing ( n = 122, 93 patients), and independent testing cohorts ( n = 42, 34 patients). Three‐dimensional residual network (3D‐ResNet), named 3D ResNet6 and 3D ResNet 18, was proposed for identifying the four origins based on single MRI and combined MRI (T1WI + T2‐FLAIR + DWI, CE‐T1WI + DWI, CE‐T1WI + T2WI + DWI). DL model was used to distinguish lung cancer from non‐lung cancer; then SCLC vs . NSCLC for lung cancer classification and BC vs. GIC for non‐lung cancer classification was performed. A subjective visual analysis was implemented and compared with DL models. Gradient‐weighted class activation mapping (Grad‐CAM) was used to visualize the model by heatmaps. Statistical Tests The area under the receiver operating characteristics curve (AUC) assess each classification performance. Results 3D ResNet18 with Grad‐CAM and AIC showed better performance than 3DResNet6, 3DResNet18 and the radiologist for distinguishing lung cancer from non‐lung cancer, SCLC from NSCLC, and BC from GIC. For single MRI sequence, T1WI, DWI, and CE‐T1WI performed best for lung cancer vs. non‐lung cancer, SCLC vs. NSCLC, and BC vs. GIC classifications. The AUC ranged from 0.675 to 0.876 and from 0.684 to 0.800 regarding the testing and independent testing datasets, respectively. For combined MRI sequences, the combination of CE‐T1WI + T2WI + DWI performed better for BC vs. GIC (AUCs of 0.788 and 0.848 on testing and independent testing datasets, respectively), while the combined MRI approach (T1WI + T2‐FLAIR + DWI, CE‐T1WI + DWI) could not achieve higher AUCs for lung cancer vs. non‐lung cancer, SCLC vs. NSCLC. Grad‐CAM helped for model visualization by heatmaps that focused on tumor regions. Data Conclusion DL models may help to distinguish the origins of BM based on MRI data. Evidence Level 3 Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Ying采纳,获得10
刚刚
halide发布了新的文献求助10
1秒前
Lucas应助yaoyinlin采纳,获得10
1秒前
慕青应助子辰采纳,获得10
2秒前
啊哈哈发布了新的文献求助10
3秒前
4秒前
MuMu完成签到,获得积分10
4秒前
4秒前
思源应助肖肖要嘻嘻采纳,获得10
4秒前
4秒前
sisyphus完成签到,获得积分10
4秒前
5秒前
Tumsyang发布了新的文献求助10
5秒前
5秒前
5秒前
无限桐完成签到,获得积分10
5秒前
6秒前
Akim应助77采纳,获得10
6秒前
6秒前
浮游应助bear采纳,获得10
6秒前
执着的酒窝完成签到,获得积分10
7秒前
天天快乐应助清脆安南采纳,获得10
7秒前
顾矜应助LLL采纳,获得10
8秒前
缓慢的孱应助阿Q采纳,获得10
8秒前
Akim应助战战采纳,获得10
9秒前
楼翩跹完成签到 ,获得积分10
9秒前
吕凯迪发布了新的文献求助10
9秒前
10秒前
刘英岑发布了新的文献求助10
10秒前
小幸运发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
lk发布了新的文献求助10
11秒前
11秒前
道松先生完成签到,获得积分10
11秒前
张天赐完成签到,获得积分10
12秒前
DKC发布了新的文献求助10
12秒前
12秒前
123完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684548
求助须知:如何正确求助?哪些是违规求助? 5037168
关于积分的说明 15184425
捐赠科研通 4843794
什么是DOI,文献DOI怎么找? 2596923
邀请新用户注册赠送积分活动 1549534
关于科研通互助平台的介绍 1508029