Deep Learning With an Attention Mechanism for Differentiating the Origin of Brain Metastasis Using MR images

医学 肺癌 脑转移 接收机工作特性 癌症 流体衰减反转恢复 乳腺癌 磁共振成像 转移 人口 放射科 肿瘤科 内科学 核医学 环境卫生
作者
Tianyu Jiao,Fuyan Li,Yi Cui,Xiao Wang,Butuo Li,Feng Shi,Yuwei Xia,Qing Zhou,Qingshi Zeng
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1624-1635 被引量:8
标识
DOI:10.1002/jmri.28695
摘要

Background Brain metastasis (BM) is a serious neurological complication of cancer of different origins. The value of deep learning (DL) to identify multiple types of primary origins remains unclear. Purpose To distinguish primary site of BM and identify the best DL models. Study Type Retrospective. Population A total of 449 BM derived from 214 patients (49.5% for female, mean age 58 years) (100 from small cell lung cancer [SCLC], 125 from non‐small cell lung cancer [NSCLC], 116 from breast cancer [BC], and 108 from gastrointestinal cancer [GIC]) were included. Field Strength/Sequence A 3‐T, T1 turbo spin echo (T1‐TSE), T2‐TSE, T2FLAIR‐TSE, DWI echo‐planar imaging (DWI‐EPI) and contrast‐enhanced T1‐TSE (CE T1‐TSE). Assessment Lesions were divided into training ( n = 285, 153 patients), testing ( n = 122, 93 patients), and independent testing cohorts ( n = 42, 34 patients). Three‐dimensional residual network (3D‐ResNet), named 3D ResNet6 and 3D ResNet 18, was proposed for identifying the four origins based on single MRI and combined MRI (T1WI + T2‐FLAIR + DWI, CE‐T1WI + DWI, CE‐T1WI + T2WI + DWI). DL model was used to distinguish lung cancer from non‐lung cancer; then SCLC vs . NSCLC for lung cancer classification and BC vs. GIC for non‐lung cancer classification was performed. A subjective visual analysis was implemented and compared with DL models. Gradient‐weighted class activation mapping (Grad‐CAM) was used to visualize the model by heatmaps. Statistical Tests The area under the receiver operating characteristics curve (AUC) assess each classification performance. Results 3D ResNet18 with Grad‐CAM and AIC showed better performance than 3DResNet6, 3DResNet18 and the radiologist for distinguishing lung cancer from non‐lung cancer, SCLC from NSCLC, and BC from GIC. For single MRI sequence, T1WI, DWI, and CE‐T1WI performed best for lung cancer vs. non‐lung cancer, SCLC vs. NSCLC, and BC vs. GIC classifications. The AUC ranged from 0.675 to 0.876 and from 0.684 to 0.800 regarding the testing and independent testing datasets, respectively. For combined MRI sequences, the combination of CE‐T1WI + T2WI + DWI performed better for BC vs. GIC (AUCs of 0.788 and 0.848 on testing and independent testing datasets, respectively), while the combined MRI approach (T1WI + T2‐FLAIR + DWI, CE‐T1WI + DWI) could not achieve higher AUCs for lung cancer vs. non‐lung cancer, SCLC vs. NSCLC. Grad‐CAM helped for model visualization by heatmaps that focused on tumor regions. Data Conclusion DL models may help to distinguish the origins of BM based on MRI data. Evidence Level 3 Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cilan完成签到 ,获得积分10
2秒前
义气的妙松完成签到,获得积分10
2秒前
yangjing发布了新的文献求助10
3秒前
rosexu发布了新的文献求助10
3秒前
盘尼西林发布了新的文献求助10
4秒前
科研通AI2S应助我是125采纳,获得10
4秒前
李健的小迷弟应助arkamar采纳,获得10
5秒前
Xiaoxiao完成签到,获得积分10
5秒前
cilan发布了新的文献求助10
5秒前
SciGPT应助William鉴哲采纳,获得10
5秒前
6秒前
咩咩完成签到,获得积分20
7秒前
合一海盗应助wtg采纳,获得200
7秒前
7秒前
Grayball应助ccc采纳,获得10
7秒前
bkagyin应助猪猪hero采纳,获得10
8秒前
8秒前
科研通AI5应助顺利毕业采纳,获得10
9秒前
领导范儿应助spray采纳,获得30
9秒前
9秒前
长风完成签到,获得积分10
10秒前
11秒前
吴岳发布了新的文献求助10
11秒前
科研通AI2S应助我是125采纳,获得10
12秒前
涛涛完成签到,获得积分10
12秒前
轩辕德地发布了新的文献求助10
13秒前
科研通AI2S应助jidou1011采纳,获得10
13秒前
魔幻的妖丽完成签到 ,获得积分10
14秒前
黄晓杰2024完成签到,获得积分10
15秒前
枫叶完成签到,获得积分10
16秒前
16秒前
17秒前
小二郎应助虚心盼晴采纳,获得10
17秒前
俊逸的盛男完成签到 ,获得积分10
17秒前
19秒前
脑洞疼应助枫叶采纳,获得10
20秒前
20秒前
Gyrate完成签到,获得积分10
21秒前
李李发布了新的文献求助50
21秒前
dashi完成签到 ,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808