亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning With an Attention Mechanism for Differentiating the Origin of Brain Metastasis Using MR images

医学 肺癌 脑转移 接收机工作特性 癌症 流体衰减反转恢复 乳腺癌 磁共振成像 转移 人口 放射科 肿瘤科 内科学 核医学 环境卫生
作者
Tianyu Jiao,Fuyan Li,Yi Cui,Xiao Wang,Butuo Li,Feng Shi,Yuwei Xia,Qing Zhou,Qingshi Zeng
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1624-1635 被引量:24
标识
DOI:10.1002/jmri.28695
摘要

Background Brain metastasis (BM) is a serious neurological complication of cancer of different origins. The value of deep learning (DL) to identify multiple types of primary origins remains unclear. Purpose To distinguish primary site of BM and identify the best DL models. Study Type Retrospective. Population A total of 449 BM derived from 214 patients (49.5% for female, mean age 58 years) (100 from small cell lung cancer [SCLC], 125 from non‐small cell lung cancer [NSCLC], 116 from breast cancer [BC], and 108 from gastrointestinal cancer [GIC]) were included. Field Strength/Sequence A 3‐T, T1 turbo spin echo (T1‐TSE), T2‐TSE, T2FLAIR‐TSE, DWI echo‐planar imaging (DWI‐EPI) and contrast‐enhanced T1‐TSE (CE T1‐TSE). Assessment Lesions were divided into training ( n = 285, 153 patients), testing ( n = 122, 93 patients), and independent testing cohorts ( n = 42, 34 patients). Three‐dimensional residual network (3D‐ResNet), named 3D ResNet6 and 3D ResNet 18, was proposed for identifying the four origins based on single MRI and combined MRI (T1WI + T2‐FLAIR + DWI, CE‐T1WI + DWI, CE‐T1WI + T2WI + DWI). DL model was used to distinguish lung cancer from non‐lung cancer; then SCLC vs . NSCLC for lung cancer classification and BC vs. GIC for non‐lung cancer classification was performed. A subjective visual analysis was implemented and compared with DL models. Gradient‐weighted class activation mapping (Grad‐CAM) was used to visualize the model by heatmaps. Statistical Tests The area under the receiver operating characteristics curve (AUC) assess each classification performance. Results 3D ResNet18 with Grad‐CAM and AIC showed better performance than 3DResNet6, 3DResNet18 and the radiologist for distinguishing lung cancer from non‐lung cancer, SCLC from NSCLC, and BC from GIC. For single MRI sequence, T1WI, DWI, and CE‐T1WI performed best for lung cancer vs. non‐lung cancer, SCLC vs. NSCLC, and BC vs. GIC classifications. The AUC ranged from 0.675 to 0.876 and from 0.684 to 0.800 regarding the testing and independent testing datasets, respectively. For combined MRI sequences, the combination of CE‐T1WI + T2WI + DWI performed better for BC vs. GIC (AUCs of 0.788 and 0.848 on testing and independent testing datasets, respectively), while the combined MRI approach (T1WI + T2‐FLAIR + DWI, CE‐T1WI + DWI) could not achieve higher AUCs for lung cancer vs. non‐lung cancer, SCLC vs. NSCLC. Grad‐CAM helped for model visualization by heatmaps that focused on tumor regions. Data Conclusion DL models may help to distinguish the origins of BM based on MRI data. Evidence Level 3 Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
24秒前
29秒前
安年完成签到 ,获得积分10
38秒前
1分钟前
汉堡包应助王王碎冰冰采纳,获得10
1分钟前
1分钟前
555557发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
555557完成签到,获得积分10
2分钟前
2分钟前
2分钟前
王王碎冰冰关注了科研通微信公众号
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
天天快乐应助111采纳,获得20
3分钟前
FJXTY发布了新的文献求助10
3分钟前
3分钟前
3分钟前
111发布了新的文献求助20
3分钟前
bkagyin应助FJXTY采纳,获得10
3分钟前
牛黄完成签到 ,获得积分10
3分钟前
彭于晏应助迅速的岩采纳,获得10
3分钟前
3分钟前
3分钟前
赵赵发布了新的文献求助10
3分钟前
4分钟前
迅速的岩发布了新的文献求助10
4分钟前
赵赵完成签到,获得积分20
4分钟前
Willow完成签到,获得积分10
4分钟前
JamesPei应助赵赵采纳,获得10
4分钟前
研友_VZG7GZ应助轻松凌柏采纳,获得10
4分钟前
4分钟前
符寄云发布了新的文献求助10
4分钟前
充电宝应助yihuifa采纳,获得10
4分钟前
斯文败类应助符寄云采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472833
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553