VVBP-tensor-based deep learning framework for high-attenuation artifact reduction in digital breast tomosynthesis

计算机科学 工件(错误) 人工智能 衰减 投影(关系代数) 计算机视觉 张量(固有定义) 层析合成 迭代重建 体素 乳房成像 模式识别(心理学) 算法 数学 乳腺摄影术 物理 光学 癌症 内科学 医学 纯数学 乳腺癌
作者
Manman Zhu,Chen Wang,Zidan Wang,Mingqiang Meng,Yongbo Wang,Jianhua Ma
标识
DOI:10.1117/12.2654197
摘要

High-attenuation artifacts in digital breast tomosynthesis (DBT) imaging will potentially obscure some lesions in breast, which may result in increasing false-negative rate. Many image domain and projection domain based methods have been developed to reduce the high-attenuation artifacts. However, the high-attenuation artifacts have not been effectively removed, since these existing methods have not exactly addressed the inherent DBT imaging constraint of sparse-view low-dose scanning in a limited angular range. Recently, view-by-view backprojection tensor (VVBP-Tensor) domain is presented as the intermediary domain between projection domain and image domain, which may be beneficial to DBT image reconstruction. Moreover, high-attenuation artifacts are relative to the imaging geometry, and it is reasonable to hypothesize that the diffusion pattern of artifacts in VVBP-Tensor domain are similar for the same DBT imaging system. Therefore, we proposed a VVBP-Tensor based deep learning framework for high-attenuation artifact reduction in DBT imaging (shorten as VTDL-DBT), which learns the artifact diffusion pattern in VVBP-Tensor domain and remove these artifacts in a data-driven manner. The proposed method can be considered as the implicitly weighted filtered backprojection (wFBP) algorithm, which replaces the explicit weighted summing with the learnable deep neural network model. In addition, a pipeline of generating paired training data is also presented for DBT high-attenuation artifact removal task, which utilizes digital anthropomorphic breast phantoms and the Monte Carlo simulation algorithm. Both qualitative and quantitative results demonstrate that the presented VTDL-DBT method has a superior DBT imaging performance on the simulated DBT dataset, in terms of high-attenuation artifact reduction and structural texture preservation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大雁发布了新的文献求助10
1秒前
伍六七发布了新的文献求助20
1秒前
奈义武发布了新的文献求助10
2秒前
隐形的杨发布了新的文献求助10
2秒前
李佳发布了新的文献求助10
2秒前
NexusExplorer应助OGLE采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
脱壳金蝉发布了新的文献求助10
4秒前
彭于彦祖应助Oatmeal5888采纳,获得50
6秒前
无极微光应助huaming采纳,获得20
6秒前
JamesPei应助田国兵采纳,获得10
7秒前
天天快乐应助漏漏漏采纳,获得30
8秒前
hglll445完成签到,获得积分10
9秒前
leelmomimi完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI6应助决明采纳,获得10
11秒前
既晴复雨发布了新的文献求助10
14秒前
16秒前
17秒前
脑洞疼应助我要创新点采纳,获得10
18秒前
科研通AI6应助Sj泽采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
万能图书馆应助Judy采纳,获得10
20秒前
20秒前
20秒前
21秒前
23秒前
qingmoheng应助djbj2022采纳,获得10
23秒前
简单的大哥完成签到,获得积分10
24秒前
25秒前
25秒前
zzdd应助科研通管家采纳,获得10
25秒前
zzdd应助科研通管家采纳,获得10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
dew应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得30
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532418
求助须知:如何正确求助?哪些是违规求助? 4621121
关于积分的说明 14577059
捐赠科研通 4561034
什么是DOI,文献DOI怎么找? 2499113
邀请新用户注册赠送积分活动 1479059
关于科研通互助平台的介绍 1450310