VVBP-tensor-based deep learning framework for high-attenuation artifact reduction in digital breast tomosynthesis

计算机科学 工件(错误) 人工智能 衰减 投影(关系代数) 计算机视觉 张量(固有定义) 层析合成 迭代重建 体素 乳房成像 模式识别(心理学) 算法 数学 乳腺摄影术 物理 光学 癌症 内科学 医学 纯数学 乳腺癌
作者
Manman Zhu,Chen Wang,Zidan Wang,Mingqiang Meng,Yongbo Wang,Jianhua Ma
标识
DOI:10.1117/12.2654197
摘要

High-attenuation artifacts in digital breast tomosynthesis (DBT) imaging will potentially obscure some lesions in breast, which may result in increasing false-negative rate. Many image domain and projection domain based methods have been developed to reduce the high-attenuation artifacts. However, the high-attenuation artifacts have not been effectively removed, since these existing methods have not exactly addressed the inherent DBT imaging constraint of sparse-view low-dose scanning in a limited angular range. Recently, view-by-view backprojection tensor (VVBP-Tensor) domain is presented as the intermediary domain between projection domain and image domain, which may be beneficial to DBT image reconstruction. Moreover, high-attenuation artifacts are relative to the imaging geometry, and it is reasonable to hypothesize that the diffusion pattern of artifacts in VVBP-Tensor domain are similar for the same DBT imaging system. Therefore, we proposed a VVBP-Tensor based deep learning framework for high-attenuation artifact reduction in DBT imaging (shorten as VTDL-DBT), which learns the artifact diffusion pattern in VVBP-Tensor domain and remove these artifacts in a data-driven manner. The proposed method can be considered as the implicitly weighted filtered backprojection (wFBP) algorithm, which replaces the explicit weighted summing with the learnable deep neural network model. In addition, a pipeline of generating paired training data is also presented for DBT high-attenuation artifact removal task, which utilizes digital anthropomorphic breast phantoms and the Monte Carlo simulation algorithm. Both qualitative and quantitative results demonstrate that the presented VTDL-DBT method has a superior DBT imaging performance on the simulated DBT dataset, in terms of high-attenuation artifact reduction and structural texture preservation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
朱孟研完成签到,获得积分10
2秒前
小爬沟完成签到 ,获得积分10
2秒前
2秒前
爱lx发布了新的文献求助10
3秒前
wushuang完成签到 ,获得积分10
3秒前
今后应助轻云触月采纳,获得10
3秒前
英俊的铭应助菠菠萝蜜采纳,获得10
3秒前
bzlish完成签到,获得积分10
5秒前
研友_841oDL发布了新的文献求助10
5秒前
Tim888完成签到,获得积分10
5秒前
大气青发布了新的文献求助10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
少说谎了好吗完成签到 ,获得积分10
6秒前
陳嘻嘻完成签到 ,获得积分20
7秒前
小心超人发布了新的文献求助10
7秒前
科研通AI6应助JJ采纳,获得10
9秒前
guanwu完成签到,获得积分20
10秒前
10秒前
爱lx完成签到,获得积分10
10秒前
11秒前
JamesPei应助无wu采纳,获得10
11秒前
11秒前
13秒前
等待的尔曼完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
轻云触月发布了新的文献求助10
15秒前
思源应助大气青采纳,获得10
16秒前
冬天的回忆完成签到 ,获得积分10
16秒前
16秒前
嘿嘿嘿发布了新的文献求助10
17秒前
慕青应助pan采纳,获得10
17秒前
17秒前
18秒前
19秒前
19秒前
科研通AI2S应助Ziyi_Xu采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680471
求助须知:如何正确求助?哪些是违规求助? 4999474
关于积分的说明 15173146
捐赠科研通 4840392
什么是DOI,文献DOI怎么找? 2594044
邀请新用户注册赠送积分活动 1547083
关于科研通互助平台的介绍 1505062