VVBP-tensor-based deep learning framework for high-attenuation artifact reduction in digital breast tomosynthesis

计算机科学 工件(错误) 人工智能 衰减 投影(关系代数) 计算机视觉 张量(固有定义) 层析合成 迭代重建 体素 乳房成像 模式识别(心理学) 算法 数学 乳腺摄影术 物理 光学 癌症 内科学 医学 纯数学 乳腺癌
作者
Manman Zhu,Chen Wang,Zidan Wang,Mingqiang Meng,Yongbo Wang,Jianhua Ma
标识
DOI:10.1117/12.2654197
摘要

High-attenuation artifacts in digital breast tomosynthesis (DBT) imaging will potentially obscure some lesions in breast, which may result in increasing false-negative rate. Many image domain and projection domain based methods have been developed to reduce the high-attenuation artifacts. However, the high-attenuation artifacts have not been effectively removed, since these existing methods have not exactly addressed the inherent DBT imaging constraint of sparse-view low-dose scanning in a limited angular range. Recently, view-by-view backprojection tensor (VVBP-Tensor) domain is presented as the intermediary domain between projection domain and image domain, which may be beneficial to DBT image reconstruction. Moreover, high-attenuation artifacts are relative to the imaging geometry, and it is reasonable to hypothesize that the diffusion pattern of artifacts in VVBP-Tensor domain are similar for the same DBT imaging system. Therefore, we proposed a VVBP-Tensor based deep learning framework for high-attenuation artifact reduction in DBT imaging (shorten as VTDL-DBT), which learns the artifact diffusion pattern in VVBP-Tensor domain and remove these artifacts in a data-driven manner. The proposed method can be considered as the implicitly weighted filtered backprojection (wFBP) algorithm, which replaces the explicit weighted summing with the learnable deep neural network model. In addition, a pipeline of generating paired training data is also presented for DBT high-attenuation artifact removal task, which utilizes digital anthropomorphic breast phantoms and the Monte Carlo simulation algorithm. Both qualitative and quantitative results demonstrate that the presented VTDL-DBT method has a superior DBT imaging performance on the simulated DBT dataset, in terms of high-attenuation artifact reduction and structural texture preservation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孔雨珍发布了新的文献求助10
1秒前
2秒前
科研dog完成签到,获得积分10
2秒前
2秒前
2秒前
帅b发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
bkagyin应助舒服的皮皮虾采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得30
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
michen发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
来日昭昭应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
yznfly应助科研通管家采纳,获得20
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
yznfly应助科研通管家采纳,获得20
6秒前
Ava应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
老福贵儿应助科研通管家采纳,获得20
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675662
求助须知:如何正确求助?哪些是违规求助? 4948205
关于积分的说明 15154348
捐赠科研通 4834937
什么是DOI,文献DOI怎么找? 2589774
邀请新用户注册赠送积分活动 1543545
关于科研通互助平台的介绍 1501282