VVBP-tensor-based deep learning framework for high-attenuation artifact reduction in digital breast tomosynthesis

计算机科学 工件(错误) 人工智能 衰减 投影(关系代数) 计算机视觉 张量(固有定义) 层析合成 迭代重建 体素 乳房成像 模式识别(心理学) 算法 数学 乳腺摄影术 物理 光学 癌症 内科学 医学 纯数学 乳腺癌
作者
Manman Zhu,Chen Wang,Zidan Wang,Mingqiang Meng,Yongbo Wang,Jianhua Ma
标识
DOI:10.1117/12.2654197
摘要

High-attenuation artifacts in digital breast tomosynthesis (DBT) imaging will potentially obscure some lesions in breast, which may result in increasing false-negative rate. Many image domain and projection domain based methods have been developed to reduce the high-attenuation artifacts. However, the high-attenuation artifacts have not been effectively removed, since these existing methods have not exactly addressed the inherent DBT imaging constraint of sparse-view low-dose scanning in a limited angular range. Recently, view-by-view backprojection tensor (VVBP-Tensor) domain is presented as the intermediary domain between projection domain and image domain, which may be beneficial to DBT image reconstruction. Moreover, high-attenuation artifacts are relative to the imaging geometry, and it is reasonable to hypothesize that the diffusion pattern of artifacts in VVBP-Tensor domain are similar for the same DBT imaging system. Therefore, we proposed a VVBP-Tensor based deep learning framework for high-attenuation artifact reduction in DBT imaging (shorten as VTDL-DBT), which learns the artifact diffusion pattern in VVBP-Tensor domain and remove these artifacts in a data-driven manner. The proposed method can be considered as the implicitly weighted filtered backprojection (wFBP) algorithm, which replaces the explicit weighted summing with the learnable deep neural network model. In addition, a pipeline of generating paired training data is also presented for DBT high-attenuation artifact removal task, which utilizes digital anthropomorphic breast phantoms and the Monte Carlo simulation algorithm. Both qualitative and quantitative results demonstrate that the presented VTDL-DBT method has a superior DBT imaging performance on the simulated DBT dataset, in terms of high-attenuation artifact reduction and structural texture preservation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的匪完成签到 ,获得积分10
1秒前
小郑完成签到 ,获得积分10
2秒前
只只完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
司空晓山发布了新的文献求助30
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
周才发布了新的文献求助10
5秒前
5秒前
海蓝博完成签到,获得积分10
5秒前
阿峤完成签到,获得积分10
5秒前
苦瓜不哭发布了新的文献求助10
6秒前
Rollei应助科研通管家采纳,获得10
6秒前
Rollei应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
Rollei应助科研通管家采纳,获得10
6秒前
飘逸书易完成签到,获得积分20
9秒前
安详的御姐完成签到,获得积分10
9秒前
10秒前
111完成签到 ,获得积分10
10秒前
993494543完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助30
10秒前
叶曦完成签到,获得积分10
11秒前
12秒前
小马甲应助renpp822采纳,获得30
14秒前
vitor发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734851
求助须知:如何正确求助?哪些是违规求助? 5356584
关于积分的说明 15327858
捐赠科研通 4879364
什么是DOI,文献DOI怎么找? 2621846
邀请新用户注册赠送积分活动 1571071
关于科研通互助平台的介绍 1527841