亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-learning based segmentation of the placenta and uterine cavity on prenatal MR images

磁共振成像 胎盘植入 分割 人工智能 子宫腔 矢状面 计算机科学 医学 产科 胎盘 子宫 放射科 怀孕 胎儿 生物 内科学 遗传学
作者
James Huang,N. Quyen,Maysam Shahed,Yin Xi,Matthew A. Lewis,Christina L. Herrera,David M. Owen,Catherine Y. Spong,Ananth J. Madhuranthakam,Diane M. Twickler,Baowei Fei
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 21-21 被引量:1
标识
DOI:10.1117/12.2653659
摘要

Magnetic resonance imaging (MRI) has potential benefits in understanding fetal and placental complications in pregnancy. An accurate segmentation of the uterine cavity and placenta can help facilitate fast and automated analyses of placenta accreta spectrum and other pregnancy complications. In this study, we trained a deep neural network for fully automatic segmentation of the uterine cavity and placenta from MR images of pregnant women with and without placental abnormalities. The two datasets were axial MRI data of 241 pregnant women, among whom, 101 patients also had sagittal MRI data. Our trained model was able to perform fully automatic 3D segmentation of MR image volumes and achieved an average Dice similarity coefficient (DSC) of 92% for uterine cavity and of 82% for placenta on the sagittal dataset and an average DSC of 87% for uterine cavity and of 82% for placenta on the axial dataset. Use of our automatic segmentation method is the first step in designing an analytics tool for to assess the risk of pregnant women with placenta accreta spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
26秒前
Criminology34应助科研通管家采纳,获得10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
27秒前
35秒前
李志全完成签到 ,获得积分10
55秒前
hhuajw应助Mario采纳,获得10
1分钟前
1分钟前
科研通AI6.1应助Karol采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
神勇的又槐完成签到,获得积分10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
Shueason完成签到 ,获得积分10
2分钟前
SHIRU发布了新的文献求助30
2分钟前
3分钟前
隐形曼青应助沉默的倔驴采纳,获得10
3分钟前
3分钟前
Jasper应助幸福的逍遥采纳,获得10
3分钟前
balko完成签到,获得积分10
3分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746834
求助须知:如何正确求助?哪些是违规求助? 5439584
关于积分的说明 15355945
捐赠科研通 4886825
什么是DOI,文献DOI怎么找? 2627463
邀请新用户注册赠送积分活动 1575912
关于科研通互助平台的介绍 1532682