Deep-learning based segmentation of the placenta and uterine cavity on prenatal MR images

分割 人工智能 计算机科学 胎盘 图像分割 计算机视觉 怀孕 胎儿 生物 遗传学
作者
James Huang,Quyen N. Do,Maysam Shahedi,Yin Xi,Matthew Lewis,Christina L. Herrera,David M. Owen,Catherine Y. Spong,Ananth J. Madhuranthakam,Diane M. Twickler,Baowei Fei
标识
DOI:10.1117/12.2653659
摘要

Magnetic resonance imaging (MRI) has potential benefits in understanding fetal and placental complications in pregnancy. An accurate segmentation of the uterine cavity and placenta can help facilitate fast and automated analyses of placenta accreta spectrum and other pregnancy complications. In this study, we trained a deep neural network for fully automatic segmentation of the uterine cavity and placenta from MR images of pregnant women with and without placental abnormalities. The two datasets were axial MRI data of 241 pregnant women, among whom, 101 patients also had sagittal MRI data. Our trained model was able to perform fully automatic 3D segmentation of MR image volumes and achieved an average Dice similarity coefficient (DSC) of 92% for uterine cavity and of 82% for placenta on the sagittal dataset and an average DSC of 87% for uterine cavity and of 82% for placenta on the axial dataset. Use of our automatic segmentation method is the first step in designing an analyticstool for to assess the risk of pregnant women with placenta accreta spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ddnematode发布了新的文献求助10
1秒前
科研通AI2S应助wrr采纳,获得10
2秒前
慕青应助斯文火龙果采纳,获得10
2秒前
xr完成签到 ,获得积分10
2秒前
壮观以松发布了新的文献求助10
4秒前
5秒前
隐形曼青应助ddd采纳,获得10
5秒前
一桶雪碧完成签到,获得积分10
7秒前
今后应助蛋壳柯采纳,获得10
9秒前
酷波er应助搞怪山晴采纳,获得10
9秒前
bewh驳回了赘婿应助
11秒前
建新发布了新的文献求助10
11秒前
iNk应助34采纳,获得10
12秒前
内向连碧关注了科研通微信公众号
13秒前
球球发布了新的文献求助10
13秒前
14秒前
李健的粉丝团团长应助Fjj采纳,获得10
14秒前
灵活又幸福的胖完成签到,获得积分10
15秒前
YuuuY完成签到 ,获得积分10
15秒前
Hello应助赵先森采纳,获得10
15秒前
快乐的凡霜完成签到,获得积分10
17秒前
Owen应助去码头整点海鸥采纳,获得10
18秒前
18秒前
明亮灭绝完成签到,获得积分10
19秒前
黄帅比发布了新的文献求助10
20秒前
20秒前
llyric完成签到,获得积分10
21秒前
Suraim完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
CYL完成签到 ,获得积分10
23秒前
orixero应助蛋壳柯采纳,获得10
25秒前
26秒前
27秒前
genomed给科大鲨鱼的求助进行了留言
27秒前
momo关注了科研通微信公众号
29秒前
Lis关闭了Lis文献求助
30秒前
科研通AI2S应助畅快芝麻采纳,获得10
31秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316734
求助须知:如何正确求助?哪些是违规求助? 2948521
关于积分的说明 8540998
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436156
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651738