Shock wave and microjet produced by bubble collapse in cavitation ultrasonic surface rolling

空化 气泡 冲击波 超声波传感器 休克(循环) 机械 材料科学 声学 声化学 物理 医学 内科学
作者
Junhua Li,Jianxin Zheng,Yingju Shang,Hanlin Deng,Liuyin Jia
标识
DOI:10.1177/09544062251321353
摘要

The introduction of the cavitation effect in ultrasonic surface rolling can further improve the strengthening effect. However, the mechanism of the time-space bubble collapse in cavitation ultrasonic surface rolling on the material wall is still uncertain. Therefore, in this study, both the shock wave produced by spherical bubble collapse and the microjet generated by non-spherical bubble collapse in cavitation ultrasonic surface rolling were investigated. A dynamic model of spherical bubble collapse in the ultrasonic surface rolling area was established, and the shock wave pressure on the wall surface produced by the collapse was analyzed numerically. The numerical results reveal that the shock wave pressure is significantly influenced by the ultrasonic amplitude. As the ultrasonic amplitude increased from 2 to 5 μm, the maximum collapse pressure of the bubble rose from 4700 to 38690 MPa, while the wall pressure increased from 75.07 to 416.07 MPa. Additionally, the pressure distribution on the wall surface caused by near-wall non-spherical bubble collapse was determined using the computational fluid dynamics (CFD) analysis method. The wall pressure generated by microjets peaked with a slight delay compared to that generated by shock waves, reaching a maximum value of 20.25 MPa when the normalized standoff distance was 0.6. Finally, cavitation erosion experiments were conducted. The results showed that the wall pressure was approximately between 340 and 382 MPa when the amplitude was 5 μm, which is generally consistent with previous numerical calculation results. This indicates that the shock wave generated by the collapse of the spherical bubble plays a dominant role in cavitation ultrasonic surface rolling. These research findings are crucial for further studies on the formation of residual stresses and microstructure evolution in cavitation ultrasonic surface rolling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wch666发布了新的文献求助10
1秒前
科研通AI2S应助croco采纳,获得10
2秒前
科研通AI5应助纯真的芷蝶采纳,获得10
3秒前
zoro完成签到,获得积分10
4秒前
5秒前
dashi完成签到 ,获得积分10
6秒前
7秒前
8秒前
开门啊菇凉完成签到,获得积分0
8秒前
小酒迟疑发布了新的文献求助10
10秒前
10秒前
10秒前
聪明天佑发布了新的文献求助10
11秒前
赘婿应助老李采纳,获得10
14秒前
yangyangyang完成签到 ,获得积分10
14秒前
小孟发布了新的文献求助10
15秒前
15秒前
科研通AI5应助科研小白采纳,获得10
16秒前
李东东完成签到 ,获得积分10
16秒前
汉堡包应助capre采纳,获得10
18秒前
完美世界应助松松果采纳,获得10
18秒前
方方在努力完成签到,获得积分20
18秒前
科研迪完成签到,获得积分10
21秒前
21秒前
21秒前
无花果应助小酒迟疑采纳,获得10
22秒前
23秒前
FashionBoy应助阿童慕采纳,获得10
23秒前
25秒前
Ava应助含糊的灵雁采纳,获得10
25秒前
25秒前
和谐的映梦完成签到,获得积分10
26秒前
小付发布了新的文献求助10
28秒前
咪咪发布了新的文献求助10
28秒前
29秒前
wch666发布了新的文献求助10
30秒前
30秒前
荷兰香猪完成签到,获得积分10
31秒前
zycdx3906发布了新的文献求助10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538611
求助须知:如何正确求助?哪些是违规求助? 3116370
关于积分的说明 9324948
捐赠科研通 2814129
什么是DOI,文献DOI怎么找? 1546497
邀请新用户注册赠送积分活动 720575
科研通“疑难数据库(出版商)”最低求助积分说明 712086