Machine Learning Identification of Patient Phenoclusters in Aortic Regurgitation

反流(循环) 鉴定(生物学) 心脏病学 内科学 医学 计算机科学 生物 植物
作者
Maan Malahfji,Xin Tan,Yodying Kaolawanich,Mujtaba Saeed,A C Guta,Michael J. Reardon,William A. Zoghbi,Venkateshwar Polsani,Michael Elliott,Raymond Kim,Meng Li,Dipan J. Shah
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
标识
DOI:10.1016/j.jcmg.2025.01.006
摘要

Current treatment paradigms assume aortic regurgitation (AR) patients to be a homogenous population, but varied courses of disease progression and outcomes are observed clinically. The aim of this study was to first use unsupervised machine learning to identify unique patient phenoclusters in AR, and subsequently evaluate their prognostic relevance. Clinical and cardiac magnetic resonance (CMR) characterization of moderate or severe AR patients was performed across 4 U.S. Data from 2 centers were used for derivation of phenoclusters and validation was performed in the other 2. The outcome was all-cause death. An unsupervised clustering pipeline, Partition Around Medoids, used 23 clinical and CMR variables to derive patient clusters independent of outcomes. Included were 972 patients with mean age 62 ± 23.2 years, 754 (78%) male, 680 (70%) trileaflet valve, and 330 (34%) underwent valve surgery. Over a median follow-up of 2.58 years (Q1-Q3: 1.03-5.50 years), the overall mortality rate was 12%. Four clusters were derived: 1) a younger predominantly male phenotype with majority of bicuspid aortic valve and high extent of left ventricular (LV) remodeling (1% mortality); 2) older male patients with predominantly tricuspid valves and intermediate outcomes (10% mortality); 3) older predominantly male patients with the highest burden of comorbidities, LV scarring, and dysfunction (22% mortality); and 4) a phenotype of predominantly female patients with high mortality and relatively higher symptoms burden, relatively lower extent of LV remodeling, and rate of aortic valve replacement (20% mortality). The clustering algorithm was independently associated with survival after adjustment for time-dependent aortic valve replacement and traditional risk markers of prognosis in patients with AR (C statistic 0.77 vs 0.75; P = 0.009 in the validation cohort). Unique patient phenoclusters of AR are described using a machine learning approach leveraging comprehensive CMR and clinical characterization. This approach may be an opportunity for a precision medicine approach to enhance risk stratification of patients with AR. Female patients with AR pose a unique phenotype with high mortality, which deserves greater attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MRM发布了新的文献求助10
2秒前
aliime发布了新的文献求助10
3秒前
Akim应助斑比采纳,获得10
4秒前
Xxxxzzz完成签到,获得积分10
5秒前
Monica完成签到,获得积分10
7秒前
Ava应助boom采纳,获得10
8秒前
8秒前
8秒前
9秒前
10秒前
大模型应助魔幻的晓夏采纳,获得10
11秒前
倔强的大萝卜完成签到,获得积分0
12秒前
后蹄儿发布了新的文献求助10
12秒前
13秒前
15秒前
15秒前
jiwen发布了新的文献求助10
16秒前
17秒前
榕树完成签到,获得积分10
19秒前
19秒前
小二郎应助schahaha采纳,获得10
20秒前
充电宝应助Kamal采纳,获得10
21秒前
冷冷发布了新的文献求助10
21秒前
boom发布了新的文献求助10
21秒前
希望天下0贩的0应助xcf6653采纳,获得10
22秒前
an12138完成签到,获得积分10
23秒前
张行完成签到,获得积分10
23秒前
蒋若风完成签到,获得积分10
24秒前
阉太狼完成签到,获得积分10
24秒前
26秒前
充电宝应助Bear采纳,获得10
27秒前
冷冷完成签到,获得积分10
28秒前
守护使者完成签到,获得积分10
28秒前
Heidi完成签到 ,获得积分10
28秒前
路灯下的小伙完成签到,获得积分10
28秒前
bfbdfbdf完成签到,获得积分10
29秒前
胡小溪完成签到 ,获得积分10
30秒前
如沐春风发布了新的文献求助10
30秒前
迷人棉花糖完成签到 ,获得积分10
35秒前
后蹄儿完成签到,获得积分10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672528
求助须知:如何正确求助?哪些是违规求助? 3228832
关于积分的说明 9782122
捐赠科研通 2939271
什么是DOI,文献DOI怎么找? 1610713
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736198