亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cost-Effective High-Definition Building Mapping: Box-Supervised Rooftop Delineation Using High- Resolution Remote Sensing Imagery

遥感 计算机科学 高分辨率 航空影像 人工智能 计算机视觉 环境科学 地图学 地质学 地理
作者
Hongjie He,Linlin Xu,Michael A. Chapman,Lingfei Ma,Jonathan Li
出处
期刊:Photogrammetric Engineering and Remote Sensing [American Society for Photogrammetry and Remote Sensing]
卷期号:91 (4): 225-239
标识
DOI:10.14358/pers.24-00115r3
摘要

Deep learning–based high-definition building mapping faces challenges due to the need for extensive high-quality training data, leading to significant annotation costs. To mitigate this challenge, we introduce Box2Boundary, a novel approach using box supervision, in conjunction with the segment anything model (SAM), to achieve cost-effective rooftop delineation. Leveraging the tiny InternImage architecture for enhanced feature extraction and using the dynamic scale training strategy to tackle scale variance, Box2Boundary demonstrates superior performance compared to alternative box-supervised methods. Extensive experiments on the Wuhan University Building Data Set validate our method's effectiveness, showcasing remarkable results with an average precision of 48.7%, outperforming DiscoBox, BoxInst, and Box2Mask by 22.0%, 11.3%, and 2.0%, respectively. In semantic segmentation, our method achieved an F 1 score of 89.54%, an overall accuracy (OA) of 97.73%, and an intersection over union (IoU) of 81.06%, outperforming all other bounding-box-supervised methods, image tag–supervised methods, and most scribble-supervised methods. It also demonstrated competitive performance compared to fully supervised methods and scribble-supervised methods. SAM integration further boosts performance, yielding an F 1 score of 90.55%, OA of 97.84%, and IoU of 82.73%. Our approach's efficacy extends to the Waterloo Building and xBD Data Sets, achieving an OA of 98.48%, IoU of 84.72%, and F 1 score of 91.73% for the former and an OA of 97.32%, IoU of 60.10%, and F 1 score of 75.08% for the latter. These results underscore the method's robustness and cost-effectiveness in rooftop delineation across diverse data sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十一完成签到 ,获得积分10
2秒前
zhongshumen完成签到 ,获得积分20
6秒前
7秒前
一个完成签到 ,获得积分10
7秒前
小菡菡发布了新的文献求助10
11秒前
12秒前
断鸿完成签到 ,获得积分10
13秒前
17秒前
18秒前
2:38am完成签到,获得积分10
20秒前
Orange应助wmr采纳,获得80
21秒前
单薄的败发布了新的文献求助10
24秒前
2:38am发布了新的文献求助10
24秒前
望其项背发布了新的文献求助10
24秒前
月月完成签到 ,获得积分10
25秒前
27秒前
月月关注了科研通微信公众号
29秒前
30秒前
夕立完成签到,获得积分10
31秒前
不能随便发布了新的文献求助10
33秒前
35秒前
40秒前
41秒前
tg113d发布了新的文献求助10
45秒前
konosuba完成签到,获得积分10
49秒前
龙卡烧烤店完成签到,获得积分10
49秒前
小二郎应助李鬼胥采纳,获得10
51秒前
53秒前
失眠的之桃完成签到 ,获得积分10
54秒前
qiu完成签到,获得积分10
56秒前
阳光溪流完成签到 ,获得积分10
1分钟前
Hello应助单纯的雅香采纳,获得10
1分钟前
木林森林木完成签到 ,获得积分10
1分钟前
小楠完成签到 ,获得积分10
1分钟前
CodeCraft应助番茄炒西红柿采纳,获得10
1分钟前
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674245
求助须知:如何正确求助?哪些是违规求助? 3229667
关于积分的说明 9786628
捐赠科研通 2940217
什么是DOI,文献DOI怎么找? 1611741
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736372