Statistical Texture Learning Method for Monitoring Abandoned Suburban Cropland Based on High-Resolution Remote Sensing and Deep Learning

计算机科学 放弃(法律) 人工智能 特征提取 深度学习 鉴定(生物学) 特征(语言学) 纹理(宇宙学) 遥感 模式识别(心理学) 机器学习 图像(数学) 地理 语言学 哲学 植物 政治学 法学 生物
作者
Qianhui Shen,Heran Deng,Xin-Jian Wen,Zhanpeng Chen,Hongfei Xu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 3060-3069 被引量:1
标识
DOI:10.1109/jstars.2023.3255541
摘要

Cropland abandonment is crucial in agricultural management and has a profound impact on crop yield and food security. In recent years, many cropland abandonment identification methods based on remote sensing observation data have been proposed, but most of these methods are based on coarse-resolution images and use traditional machine learning methods for simple identification. To this end, we perform abandonment recognition on high-resolution remote sensing images. According to the texture features of the abandoned land, we combine the method of statistical texture learning and propose a new deep learning framework called PSPNet-STL. The model integrates high-level semantic feature extraction and deep mining of low-level texture features to identify cropland abandonment. First, we labeled the abandoned cropland area and built the HRAC dataset, a high-resolution cropland abandonment dataset. Secondly, we improved PSPNet by fusing statistical texture learning modules to learn multiple texture information on low-level feature maps, and combined high-level semantic features for cropland abandonment recognition. Experiments are performed on the HRAC dataset. Compared with other methods, the proposed model has the best performance on this dataset, both in terms of accuracy and visualization, proving that deep mining of low-level statistical texture features is beneficial for crop abandonment recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良天抒完成签到 ,获得积分20
刚刚
宇宙中心发布了新的文献求助10
刚刚
小蘑菇应助吕方采纳,获得10
刚刚
夙夙发布了新的文献求助10
1秒前
TP完成签到,获得积分10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得30
2秒前
916应助科研通管家采纳,获得10
2秒前
Bio应助felix采纳,获得50
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Bio应助科研通管家采纳,获得10
2秒前
GEeZiii发布了新的文献求助10
2秒前
916应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
ED应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
lucyliu完成签到 ,获得积分10
2秒前
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得20
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
NameSL完成签到,获得积分10
4秒前
俏皮的匕完成签到,获得积分10
4秒前
Fonseca发布了新的文献求助10
5秒前
Mollyshimmer完成签到 ,获得积分10
5秒前
吉以寒完成签到,获得积分10
5秒前
marson发布了新的文献求助10
6秒前
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650