已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Statistical Texture Learning Method for Monitoring Abandoned Suburban Cropland Based on High-Resolution Remote Sensing and Deep Learning

计算机科学 放弃(法律) 人工智能 特征提取 深度学习 鉴定(生物学) 特征(语言学) 纹理(宇宙学) 遥感 模式识别(心理学) 机器学习 图像(数学) 地理 语言学 哲学 植物 政治学 法学 生物
作者
Qianhui Shen,Heran Deng,Xin-Jian Wen,Zhanpeng Chen,Hongfei Xu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 3060-3069 被引量:1
标识
DOI:10.1109/jstars.2023.3255541
摘要

Cropland abandonment is crucial in agricultural management and has a profound impact on crop yield and food security. In recent years, many cropland abandonment identification methods based on remote sensing observation data have been proposed, but most of these methods are based on coarse-resolution images and use traditional machine learning methods for simple identification. To this end, we perform abandonment recognition on high-resolution remote sensing images. According to the texture features of the abandoned land, we combine the method of statistical texture learning and propose a new deep learning framework called PSPNet-STL. The model integrates high-level semantic feature extraction and deep mining of low-level texture features to identify cropland abandonment. First, we labeled the abandoned cropland area and built the HRAC dataset, a high-resolution cropland abandonment dataset. Secondly, we improved PSPNet by fusing statistical texture learning modules to learn multiple texture information on low-level feature maps, and combined high-level semantic features for cropland abandonment recognition. Experiments are performed on the HRAC dataset. Compared with other methods, the proposed model has the best performance on this dataset, both in terms of accuracy and visualization, proving that deep mining of low-level statistical texture features is beneficial for crop abandonment recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈比人linling完成签到,获得积分10
刚刚
meng发布了新的文献求助10
1秒前
自由的蜗牛完成签到,获得积分20
5秒前
6秒前
6秒前
sissiarno应助缥缈的机器猫采纳,获得30
13秒前
13秒前
iwsaml完成签到,获得积分10
15秒前
cccyyy完成签到,获得积分10
16秒前
天天快乐应助自由的蜗牛采纳,获得30
23秒前
25秒前
32秒前
科研通AI2S应助iwsaml采纳,获得10
35秒前
小梦完成签到,获得积分10
37秒前
大力指甲油完成签到 ,获得积分20
39秒前
香蕉觅云应助香菜采纳,获得10
40秒前
41秒前
李慧敏发布了新的文献求助10
44秒前
李慧敏完成签到,获得积分10
51秒前
SCT发布了新的文献求助10
52秒前
55秒前
1分钟前
去你丫的随机昵称完成签到,获得积分10
1分钟前
江流有声完成签到 ,获得积分10
1分钟前
fight发布了新的文献求助10
1分钟前
linshunan完成签到 ,获得积分10
1分钟前
1分钟前
Ava应助Shuai采纳,获得10
1分钟前
1分钟前
1分钟前
rsaorestoaerstn完成签到,获得积分10
1分钟前
滴滴哒应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Paddi发布了新的文献求助10
1分钟前
YU发布了新的文献求助10
1分钟前
1分钟前
慕青应助闾丘惜萱采纳,获得10
1分钟前
Ava应助老实的夜白采纳,获得10
1分钟前
研友_nVWP2Z完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311000
求助须知:如何正确求助?哪些是违规求助? 2943859
关于积分的说明 8516564
捐赠科研通 2619145
什么是DOI,文献DOI怎么找? 1432095
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802