Multimodal motor imagery decoding method based on temporal spatial feature alignment and fusion

脑-机接口 计算机科学 解码方法 运动表象 模式 人工智能 模式识别(心理学) 模态(人机交互) 特征提取 接口(物质) 特征(语言学) 脑电图 计算机视觉 社会学 哲学 最大气泡压力法 气泡 精神科 并行计算 电信 语言学 社会科学 心理学
作者
Yukun Zhang,Shuang Qiu,Huiguang He
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (2): 026009-026009 被引量:8
标识
DOI:10.1088/1741-2552/acbfdf
摘要

Abstract Objective . A motor imagery-based brain-computer interface (MI-BCI) translates spontaneous movement intention from the brain to outside devices. Multimodal MI-BCI that uses multiple neural signals contains rich common and complementary information and is promising for enhancing the decoding accuracy of MI-BCI. However, the heterogeneity of different modalities makes the multimodal decoding task difficult. How to effectively utilize multimodal information remains to be further studied. Approach . In this study, a multimodal MI decoding neural network was proposed. Spatial feature alignment losses were designed to enhance the feature representations extracted from the heterogeneous data and guide the fusion of features from different modalities. An attention-based modality fusion module was built to align and fuse the features in the temporal dimension. To evaluate the proposed decoding method, a five-class MI electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) dataset were constructed. Main results and significance . The comparison experimental results showed that the proposed decoding method achieved higher decoding accuracy than the compared methods on both the self-collected dataset and a public dataset. The ablation results verified the effectiveness of each part of the proposed method. Feature distribution visualization results showed that the proposed losses enhance the feature representation of EEG and fNIRS modalities. The proposed method based on EEG and fNIRS modalities has significant potential for improving decoding performance of MI tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI5应助正直天佑采纳,获得10
2秒前
怕孤独的友桃完成签到,获得积分10
2秒前
2秒前
Yx发布了新的文献求助30
4秒前
xusuizi发布了新的文献求助10
6秒前
上官若男应助cccdida采纳,获得10
6秒前
6秒前
清风完成签到,获得积分10
7秒前
bing完成签到,获得积分10
7秒前
独特的沛凝完成签到,获得积分10
7秒前
7秒前
大个应助诗酒采纳,获得10
8秒前
一落成殇发布了新的文献求助30
9秒前
东方完成签到,获得积分10
10秒前
10秒前
易念发布了新的文献求助10
11秒前
jyy应助斑竹采纳,获得10
11秒前
科目三应助甜美冰旋采纳,获得10
12秒前
某只兔子发布了新的文献求助10
12秒前
ly完成签到,获得积分10
14秒前
14秒前
15秒前
Cc大熊发布了新的文献求助10
15秒前
酷波er应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
iNk应助科研通管家采纳,获得20
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
大模型应助科研通管家采纳,获得10
17秒前
iNk应助科研通管家采纳,获得20
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得30
17秒前
17秒前
柯一一应助科研通管家采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498