Prediction accuracy of Random Forest, XGBoost, LightGBM, and artificial neural network for shear resistance of post-installed anchors

结构工程 人工神经网络 材料科学 复合材料 抗性(生态学) 剪切(地质) 机器学习 抗剪强度(土壤) 随机森林 数据挖掘 计算机科学 模式识别(心理学) 人工智能 环境科学 工程类 土壤科学 生物 生态学 土壤水分
作者
Daisuke SUENAGA,Yuya Takase,Takahide Abe,Genta ORITA,S. Ando
出处
期刊:Structures [Elsevier]
卷期号:50: 1252-1263 被引量:20
标识
DOI:10.1016/j.istruc.2023.02.066
摘要

Post-installed anchors and reinforcing bars are used to connect equipment or to fasten strengthening members to reinforced concrete (RC) structures. For safety reasons, appropriate structural design is critical. Recently, artificial intelligence (AI) and machine learning (ML) have been applied in various fields. According to previous studies, the bending strength of the RC beam and the bond strength of the surface can be predicted using ML. In this study, the mechanical behavior of post-installed anchors subjected to shear force were predicted using ML. Four algorithms were applied in this study: Random Forest (RF), XGBoost (XB), LightGBM (LG), and an artificial neural network (ANN). Moreover, the authors’ previous test results were used for the ML and testing. The number of specimens was thirty-two. The test parameters were the concrete compressive strength fc, diameter of the anchor bolt dd, type of adhesive, and tensile ratio rN. The values for fc and dd were set at 13.0–35.5 N/mm2 and 13–25 mm, respectively. In this study, one epoxy adhesive and three cement-based adhesives were used. rN, which is the ratio of the tensile stress to yield strength of the anchor bolt, was set to 0, 0.33, and 0.66. Consequently, the four algorithms could accurately predict the mechanical behavior of the specimen when the parameters were within or close to the training data. However, the prediction agreements of RF, XB, and LG were not good for the behavior of specimens whose parameters were not included in the training data. Nevertheless, the ANN was able to reasonably predict the behavior of these cases. It was concluded that the four algorithms can make good predictions when the parameters are within or close to the training data. However, when parameters outside the training data were used, the ANN was the best of the four algorithms used in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆滚滚发布了新的文献求助10
1秒前
wmuedu发布了新的文献求助10
1秒前
老刘不吃香菜完成签到,获得积分10
3秒前
胡大嘴先生完成签到,获得积分10
4秒前
无限安荷发布了新的文献求助10
4秒前
技术的不能发表完成签到 ,获得积分10
4秒前
哈哈哈哈完成签到,获得积分10
5秒前
7秒前
7秒前
一只滦完成签到,获得积分10
8秒前
丘比特应助gong9456采纳,获得10
8秒前
迎南完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
12秒前
梁寒完成签到,获得积分10
13秒前
科研通AI6应助君莫笑采纳,获得10
13秒前
旺仔小高发布了新的文献求助10
13秒前
幸福白安发布了新的文献求助10
13秒前
13秒前
科研狗发布了新的文献求助10
13秒前
桃李发布了新的文献求助10
13秒前
13秒前
Executor完成签到,获得积分10
13秒前
14秒前
14秒前
天真的半莲完成签到,获得积分20
15秒前
可能可能最可能不像不像不太像完成签到,获得积分10
16秒前
chenjun7080完成签到,获得积分10
16秒前
爱学习的公主完成签到,获得积分10
16秒前
曈梦完成签到,获得积分10
17秒前
烟花应助zouxiang采纳,获得10
17秒前
李爱国应助孤独星月采纳,获得10
18秒前
科研通AI6应助腌椰菜采纳,获得10
18秒前
Jason完成签到,获得积分10
19秒前
不靠谱发布了新的文献求助10
19秒前
漂泊完成签到,获得积分10
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600913
求助须知:如何正确求助?哪些是违规求助? 4686477
关于积分的说明 14844184
捐赠科研通 4678943
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252