Prediction accuracy of Random Forest, XGBoost, LightGBM, and artificial neural network for shear resistance of post-installed anchors

结构工程 人工神经网络 材料科学 复合材料 抗性(生态学) 剪切(地质) 机器学习 抗剪强度(土壤) 随机森林 数据挖掘 计算机科学 模式识别(心理学) 人工智能 环境科学 工程类 土壤科学 生物 生态学 土壤水分
作者
Daisuke SUENAGA,Yuya Takase,Takahide Abe,Genta ORITA,S. Ando
出处
期刊:Structures [Elsevier]
卷期号:50: 1252-1263 被引量:20
标识
DOI:10.1016/j.istruc.2023.02.066
摘要

Post-installed anchors and reinforcing bars are used to connect equipment or to fasten strengthening members to reinforced concrete (RC) structures. For safety reasons, appropriate structural design is critical. Recently, artificial intelligence (AI) and machine learning (ML) have been applied in various fields. According to previous studies, the bending strength of the RC beam and the bond strength of the surface can be predicted using ML. In this study, the mechanical behavior of post-installed anchors subjected to shear force were predicted using ML. Four algorithms were applied in this study: Random Forest (RF), XGBoost (XB), LightGBM (LG), and an artificial neural network (ANN). Moreover, the authors’ previous test results were used for the ML and testing. The number of specimens was thirty-two. The test parameters were the concrete compressive strength fc, diameter of the anchor bolt dd, type of adhesive, and tensile ratio rN. The values for fc and dd were set at 13.0–35.5 N/mm2 and 13–25 mm, respectively. In this study, one epoxy adhesive and three cement-based adhesives were used. rN, which is the ratio of the tensile stress to yield strength of the anchor bolt, was set to 0, 0.33, and 0.66. Consequently, the four algorithms could accurately predict the mechanical behavior of the specimen when the parameters were within or close to the training data. However, the prediction agreements of RF, XB, and LG were not good for the behavior of specimens whose parameters were not included in the training data. Nevertheless, the ANN was able to reasonably predict the behavior of these cases. It was concluded that the four algorithms can make good predictions when the parameters are within or close to the training data. However, when parameters outside the training data were used, the ANN was the best of the four algorithms used in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙茶酱菜卷完成签到 ,获得积分10
刚刚
汉堡包应助两张采纳,获得10
1秒前
1秒前
3秒前
ding应助六尺巷采纳,获得10
3秒前
CSX发布了新的文献求助10
4秒前
4秒前
感动代荷完成签到 ,获得积分10
4秒前
善学以致用应助NXK采纳,获得10
4秒前
5秒前
5秒前
112233发布了新的文献求助10
5秒前
Jasper应助Angora采纳,获得10
6秒前
6秒前
Gyz完成签到,获得积分10
6秒前
核桃发布了新的文献求助10
7秒前
7秒前
Nov完成签到,获得积分10
8秒前
语物完成签到,获得积分10
8秒前
vidi发布了新的文献求助10
8秒前
zhang发布了新的文献求助10
8秒前
殷勤的紫槐应助CCrain采纳,获得200
9秒前
酷酷山柳完成签到,获得积分10
9秒前
9秒前
10秒前
奋斗的夏柳完成签到 ,获得积分10
10秒前
基根豹完成签到,获得积分10
10秒前
instanc通发布了新的文献求助10
10秒前
10秒前
Lorayacarat发布了新的文献求助10
11秒前
WQ发布了新的文献求助10
11秒前
11秒前
12秒前
13211发布了新的文献求助10
13秒前
晓薇完成签到,获得积分10
14秒前
基根豹发布了新的文献求助10
14秒前
hiding完成签到,获得积分10
14秒前
Nov发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559