Prediction accuracy of Random Forest, XGBoost, LightGBM, and artificial neural network for shear resistance of post-installed anchors

结构工程 人工神经网络 材料科学 复合材料 抗性(生态学) 剪切(地质) 机器学习 抗剪强度(土壤) 随机森林 数据挖掘 计算机科学 模式识别(心理学) 人工智能 环境科学 工程类 土壤科学 生物 生态学 土壤水分
作者
Daisuke SUENAGA,Yuya Takase,Takahide Abe,Genta ORITA,S. Ando
出处
期刊:Structures [Elsevier]
卷期号:50: 1252-1263 被引量:20
标识
DOI:10.1016/j.istruc.2023.02.066
摘要

Post-installed anchors and reinforcing bars are used to connect equipment or to fasten strengthening members to reinforced concrete (RC) structures. For safety reasons, appropriate structural design is critical. Recently, artificial intelligence (AI) and machine learning (ML) have been applied in various fields. According to previous studies, the bending strength of the RC beam and the bond strength of the surface can be predicted using ML. In this study, the mechanical behavior of post-installed anchors subjected to shear force were predicted using ML. Four algorithms were applied in this study: Random Forest (RF), XGBoost (XB), LightGBM (LG), and an artificial neural network (ANN). Moreover, the authors’ previous test results were used for the ML and testing. The number of specimens was thirty-two. The test parameters were the concrete compressive strength fc, diameter of the anchor bolt dd, type of adhesive, and tensile ratio rN. The values for fc and dd were set at 13.0–35.5 N/mm2 and 13–25 mm, respectively. In this study, one epoxy adhesive and three cement-based adhesives were used. rN, which is the ratio of the tensile stress to yield strength of the anchor bolt, was set to 0, 0.33, and 0.66. Consequently, the four algorithms could accurately predict the mechanical behavior of the specimen when the parameters were within or close to the training data. However, the prediction agreements of RF, XB, and LG were not good for the behavior of specimens whose parameters were not included in the training data. Nevertheless, the ANN was able to reasonably predict the behavior of these cases. It was concluded that the four algorithms can make good predictions when the parameters are within or close to the training data. However, when parameters outside the training data were used, the ANN was the best of the four algorithms used in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到 ,获得积分10
刚刚
温暖半芹完成签到,获得积分20
1秒前
张志迪发布了新的文献求助10
1秒前
1秒前
小石头完成签到,获得积分10
1秒前
fxy发布了新的文献求助10
1秒前
科研小白发布了新的文献求助30
1秒前
kk发布了新的文献求助10
1秒前
1秒前
1秒前
mmol发布了新的文献求助10
2秒前
陶醉的向南完成签到,获得积分10
2秒前
XY应助好运莲莲采纳,获得14
2秒前
科研通AI6应助0717号执行官采纳,获得10
3秒前
3秒前
hjygzv完成签到 ,获得积分10
3秒前
认真凌兰发布了新的文献求助10
4秒前
Mr.Reese完成签到,获得积分10
4秒前
李文俊的太祖王振全完成签到,获得积分10
4秒前
4秒前
Carolna完成签到,获得积分10
4秒前
4秒前
Yuan完成签到,获得积分10
4秒前
打打应助kidney采纳,获得10
5秒前
5秒前
温暖半芹发布了新的文献求助30
5秒前
linglingling完成签到 ,获得积分10
5秒前
5秒前
tobino1完成签到,获得积分10
7秒前
丘比特应助古猫宁采纳,获得10
7秒前
戴戴搞科研完成签到,获得积分20
7秒前
iamcrazyboy完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
葛启峰完成签到,获得积分10
7秒前
sakura发布了新的文献求助10
8秒前
大模型应助zzioo采纳,获得10
8秒前
8秒前
CR7完成签到,获得积分10
8秒前
9秒前
CCCCCL发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525453
求助须知:如何正确求助?哪些是违规求助? 4615640
关于积分的说明 14549575
捐赠科研通 4553716
什么是DOI,文献DOI怎么找? 2495470
邀请新用户注册赠送积分活动 1476017
关于科研通互助平台的介绍 1447758