清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction accuracy of Random Forest, XGBoost, LightGBM, and artificial neural network for shear resistance of post-installed anchors

结构工程 人工神经网络 材料科学 复合材料 抗性(生态学) 剪切(地质) 机器学习 抗剪强度(土壤) 随机森林 数据挖掘 计算机科学 模式识别(心理学) 人工智能 环境科学 工程类 土壤科学 生物 生态学 土壤水分
作者
Daisuke SUENAGA,Yuya Takase,Takahide Abe,Genta ORITA,S. Ando
出处
期刊:Structures [Elsevier]
卷期号:50: 1252-1263 被引量:20
标识
DOI:10.1016/j.istruc.2023.02.066
摘要

Post-installed anchors and reinforcing bars are used to connect equipment or to fasten strengthening members to reinforced concrete (RC) structures. For safety reasons, appropriate structural design is critical. Recently, artificial intelligence (AI) and machine learning (ML) have been applied in various fields. According to previous studies, the bending strength of the RC beam and the bond strength of the surface can be predicted using ML. In this study, the mechanical behavior of post-installed anchors subjected to shear force were predicted using ML. Four algorithms were applied in this study: Random Forest (RF), XGBoost (XB), LightGBM (LG), and an artificial neural network (ANN). Moreover, the authors’ previous test results were used for the ML and testing. The number of specimens was thirty-two. The test parameters were the concrete compressive strength fc, diameter of the anchor bolt dd, type of adhesive, and tensile ratio rN. The values for fc and dd were set at 13.0–35.5 N/mm2 and 13–25 mm, respectively. In this study, one epoxy adhesive and three cement-based adhesives were used. rN, which is the ratio of the tensile stress to yield strength of the anchor bolt, was set to 0, 0.33, and 0.66. Consequently, the four algorithms could accurately predict the mechanical behavior of the specimen when the parameters were within or close to the training data. However, the prediction agreements of RF, XB, and LG were not good for the behavior of specimens whose parameters were not included in the training data. Nevertheless, the ANN was able to reasonably predict the behavior of these cases. It was concluded that the four algorithms can make good predictions when the parameters are within or close to the training data. However, when parameters outside the training data were used, the ANN was the best of the four algorithms used in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助吱吱采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
29秒前
33秒前
威武的翠安完成签到 ,获得积分10
34秒前
小马甲应助阿米尔盼盼采纳,获得10
38秒前
zxx完成签到 ,获得积分0
51秒前
gwbk完成签到,获得积分10
58秒前
HCCha完成签到,获得积分10
1分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
甘川完成签到 ,获得积分10
3分钟前
qq完成签到 ,获得积分10
3分钟前
su完成签到 ,获得积分10
3分钟前
严冰蝶完成签到 ,获得积分10
3分钟前
Jiang 小白发布了新的文献求助10
4分钟前
4分钟前
丘比特应助科研通管家采纳,获得10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
嗯嗯发布了新的文献求助10
4分钟前
嗯嗯完成签到,获得积分10
5分钟前
枪王阿绣完成签到 ,获得积分10
5分钟前
CipherSage应助FXe采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
Bonnienuit完成签到 ,获得积分10
6分钟前
搜集达人应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
田田完成签到 ,获得积分10
6分钟前
吱吱发布了新的文献求助10
7分钟前
吱吱完成签到,获得积分10
7分钟前
高高从霜完成签到 ,获得积分10
7分钟前
领导范儿应助科研通管家采纳,获得10
8分钟前
坚强紫山完成签到,获得积分10
8分钟前
xiaowangwang完成签到 ,获得积分10
8分钟前
鲤鱼山人完成签到 ,获得积分10
8分钟前
V_I_G完成签到 ,获得积分0
8分钟前
8分钟前
9分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584787
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771569
捐赠科研通 4614474
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531