清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction accuracy of Random Forest, XGBoost, LightGBM, and artificial neural network for shear resistance of post-installed anchors

结构工程 人工神经网络 材料科学 复合材料 抗性(生态学) 剪切(地质) 机器学习 抗剪强度(土壤) 随机森林 数据挖掘 计算机科学 模式识别(心理学) 人工智能 环境科学 工程类 土壤科学 生物 生态学 土壤水分
作者
Daisuke SUENAGA,Yuya Takase,Takahide Abe,Genta ORITA,S. Ando
出处
期刊:Structures [Elsevier]
卷期号:50: 1252-1263 被引量:20
标识
DOI:10.1016/j.istruc.2023.02.066
摘要

Post-installed anchors and reinforcing bars are used to connect equipment or to fasten strengthening members to reinforced concrete (RC) structures. For safety reasons, appropriate structural design is critical. Recently, artificial intelligence (AI) and machine learning (ML) have been applied in various fields. According to previous studies, the bending strength of the RC beam and the bond strength of the surface can be predicted using ML. In this study, the mechanical behavior of post-installed anchors subjected to shear force were predicted using ML. Four algorithms were applied in this study: Random Forest (RF), XGBoost (XB), LightGBM (LG), and an artificial neural network (ANN). Moreover, the authors’ previous test results were used for the ML and testing. The number of specimens was thirty-two. The test parameters were the concrete compressive strength fc, diameter of the anchor bolt dd, type of adhesive, and tensile ratio rN. The values for fc and dd were set at 13.0–35.5 N/mm2 and 13–25 mm, respectively. In this study, one epoxy adhesive and three cement-based adhesives were used. rN, which is the ratio of the tensile stress to yield strength of the anchor bolt, was set to 0, 0.33, and 0.66. Consequently, the four algorithms could accurately predict the mechanical behavior of the specimen when the parameters were within or close to the training data. However, the prediction agreements of RF, XB, and LG were not good for the behavior of specimens whose parameters were not included in the training data. Nevertheless, the ANN was able to reasonably predict the behavior of these cases. It was concluded that the four algorithms can make good predictions when the parameters are within or close to the training data. However, when parameters outside the training data were used, the ANN was the best of the four algorithms used in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vbnn完成签到 ,获得积分10
5秒前
研友_ZbP41L完成签到 ,获得积分10
8秒前
9秒前
10秒前
xun发布了新的文献求助10
16秒前
18秒前
天天快乐应助xun采纳,获得10
24秒前
李志全完成签到 ,获得积分10
27秒前
Artin完成签到,获得积分10
27秒前
hml123完成签到,获得积分10
32秒前
jlwang完成签到,获得积分10
52秒前
52秒前
xun发布了新的文献求助10
58秒前
Damon完成签到 ,获得积分10
1分钟前
1分钟前
nuliguan完成签到 ,获得积分10
1分钟前
Tong完成签到,获得积分0
1分钟前
xun完成签到,获得积分20
1分钟前
xjcy应助xun采纳,获得10
1分钟前
oaoalaa完成签到 ,获得积分10
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
1分钟前
zznzn发布了新的文献求助10
2分钟前
2分钟前
Orange应助zznzn采纳,获得10
2分钟前
飘逸的落叶松完成签到 ,获得积分10
2分钟前
++完成签到 ,获得积分10
2分钟前
咩噗发布了新的文献求助20
3分钟前
我爱小白贺完成签到 ,获得积分10
3分钟前
稻子完成签到 ,获得积分10
3分钟前
zyw完成签到 ,获得积分10
3分钟前
白昼の月完成签到 ,获得积分0
3分钟前
橘络完成签到 ,获得积分10
3分钟前
a46539749完成签到 ,获得积分10
4分钟前
上官若男应助云止采纳,获得10
4分钟前
搜集达人应助咩噗采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
4分钟前
咩噗发布了新的文献求助10
4分钟前
大尧子完成签到 ,获得积分10
4分钟前
高分求助中
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288478
求助须知:如何正确求助?哪些是违规求助? 2925804
关于积分的说明 8423362
捐赠科研通 2596904
什么是DOI,文献DOI怎么找? 1416721
科研通“疑难数据库(出版商)”最低求助积分说明 659488
邀请新用户注册赠送积分活动 641878