物理
凝聚态物理
反铁磁性
拉曼散射
范德瓦尔斯力
散射
格子(音乐)
拉曼光谱
量子力学
分子
声学
作者
Emre Ergeçen,Batyr Ilyas,Junghyun Kim,Jaena Park,Mehmet Burak Yilmaz,Tianchuang Luo,Di Xiao,Satoshi Okamoto,Je-Geun Park,Nuh Gedik
标识
DOI:10.1073/pnas.2208968120
摘要
Strong interactions between different degrees of freedom lead to exotic phases of matter with complex order parameters and emergent collective excitations. Conventional techniques, such as scattering and transport, probe the amplitudes of these excitations, but they are typically insensitive to phase. Therefore, novel methods with phase sensitivity are required to understand ground states with phase modulations and interactions that couple to the phase of collective modes. Here, by performing phase-resolved coherent phonon spectroscopy (CPS), we reveal a hidden spin-lattice coupling in a vdW antiferromagnet FePS3 that eluded other phase-insensitive conventional probes, such as Raman and X-ray scattering. With comparative analysis and analytical calculations, we directly show that the magnetic order in FePS3 selectively couples to the trigonal distortions through partially filled t2g orbitals. This magnetoelastic coupling is linear in magnetic order and lattice parameters, rendering these distortions inaccessible to inelastic scattering techniques. Our results not only capture the elusive spin-lattice coupling in FePS3 but also establish phase-resolved CPS as a tool to investigate hidden interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI