材料科学
阳极
原电池
化学工程
锂(药物)
电解质
电化学
比表面积
储能
纳米技术
电极
冶金
工程类
内分泌学
物理化学
物理
催化作用
功率(物理)
生物化学
化学
医学
量子力学
作者
Song Kyu Kang,Minho Kim,Hyun Ho Shin,Wongeun Yoon,Seungjun Lee,Daehee Jang,Junil Choi,Gwan Hyeon Park,Jungsoo Park,Won Bae Kim
标识
DOI:10.1002/adfm.202300143
摘要
Abstract Mixed transition metal oxides are promising anodes to meet high‐performance energy storage materials; however, their widespread uses are restrained owing to limited theoretical capacity, restricted synthesis methods and templates, low conductivity, and extreme volume expansion. Here, Mn 3‐x Fe x O 4 nanosheets with interconnected conductive networks are synthesized via a novel self‐hybridization approach of a facile, galvanic replacement‐derived, tetraethyl orthosilicate‐assisted hydrothermal process. An exceptionally high reversible capacity of 1492.9 mAh g −1 at 0.1 A g −1 is achieved by producing Li‐rich phase through combined synergistic effects of amorphous phases with interface modification design for fully utilizing highly spin‐polarized surface capacitance. Furthermore, it is demonstrated that large surface area can effectively facilitate Li‐ion kinetics, and the formation of interconnected conductive networks improves the electrical conductivity and structural stability by alleviating volume expansion. This leads to a high rate capability of 412.3 mAh g −1 even at an extremely high current density of 10 A g −1 and stable cyclic stability with a capacity up to 921.9 mAh g −1 at 2 A g −1 after 500 cycles. This study can help to overcome theoretically limited electrochemical properties of conventional metal oxide materials, providing a new insight into the rational design with surface alteration to boost Li‐ion storage capacity.
科研通智能强力驱动
Strongly Powered by AbleSci AI