Performance of machine learning-based coronary computed tomography angiography for selecting revascularization candidates

医学 血运重建 经皮冠状动脉介入治疗 冠状动脉疾病 放射科 传统PCI 内科学 心脏病学 心肌梗塞
作者
Zengfa Huang,Yi Ding,Yang� Yang,Shengchao Zhao,Shutong Zhang,Jing Xiao,Chengyu Ding,Ning Guo,Zuoqin Li,Sizhong Zhou,Guijuan Cao,Xiang Wang
出处
期刊:Acta Radiologica [SAGE]
卷期号:65 (1): 123-132 被引量:1
标识
DOI:10.1177/02841851231158730
摘要

Limited studies have investigated the accuracy of therapeutic decision-making using machine learning-based coronary computed tomography angiography (ML-CCTA) compared with CCTA.To investigate the performance of ML-CCTA for therapeutic decision compared with CCTA.The study population consisted of 322 consecutive patients with stable coronary artery disease. The SYNTAX score was calculated with an online calculator based on ML-CCTA results. Therapeutic decision-making was determined by ML-CCTA results and the ML-CCTA-based SYNTAX score. The therapeutic strategy and the appropriate revascularization procedure were selected using ML-CCTA, CCTA, and invasive coronary angiography (ICA) independently.The sensitivity, specificity, positive predictive value, negative predictive value, accuracy of ML-CCTA and CCTA for selecting revascularization candidates were 87.01%, 96.43%, 95.71%, 89.01%, 91.93%, and 85.71%, 87.50%, 86.27%, 86.98%, 86.65%, respectively, using ICA as the standard reference. The area under the receiver operating characteristic curve (AUC) of ML-CCTA for selecting revascularization candidates was significantly higher than CCTA (0.917 vs. 0.866, P = 0.016). Subgroup analysis showed the AUC of ML-CCTA for selecting percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) candidates was significantly higher than CCTA (0.883 vs. 0.777, P < 0.001, 0.912 vs. 0.826, P = 0.003, respectively).ML-CCTA could distinguish between patients who need revascularization and those who do not. In addition, ML-CCTA showed a slightly superior to CCTA in making an appropriate decision for patients and selecting a suitable revascularization strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xia完成签到,获得积分10
2秒前
赵聚星发布了新的文献求助200
4秒前
科研通AI2S应助周乘风采纳,获得30
4秒前
仁爱听露完成签到 ,获得积分10
4秒前
慕青应助冰美式采纳,获得10
4秒前
5秒前
二东完成签到 ,获得积分10
5秒前
望舒发布了新的文献求助10
5秒前
6秒前
阿尼亚完成签到,获得积分20
6秒前
周凡淇发布了新的文献求助10
10秒前
胡杨发布了新的文献求助10
11秒前
望舒完成签到,获得积分10
12秒前
12秒前
TobyGarfielD发布了新的文献求助10
12秒前
wang完成签到,获得积分10
14秒前
无位公相完成签到,获得积分10
15秒前
冰美式发布了新的文献求助10
17秒前
Akim应助stay采纳,获得10
18秒前
隐形山兰发布了新的文献求助10
18秒前
Wenpandaen应助decademe采纳,获得10
19秒前
正直老九完成签到 ,获得积分10
19秒前
啊强完成签到 ,获得积分10
20秒前
ha完成签到 ,获得积分10
20秒前
21秒前
周乘风完成签到,获得积分20
21秒前
852应助yuna采纳,获得10
22秒前
Wenpandaen应助舒先生采纳,获得10
22秒前
糖呼噜完成签到,获得积分10
23秒前
踏实天空应助黑熊精采纳,获得10
24秒前
24秒前
研友_V8Qmr8完成签到,获得积分10
28秒前
29秒前
赘婿应助科研小趴菜采纳,获得10
29秒前
30秒前
31秒前
吉他平方完成签到,获得积分10
32秒前
32秒前
隐形山兰完成签到,获得积分20
33秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138292
求助须知:如何正确求助?哪些是违规求助? 2789301
关于积分的说明 7790796
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625971
版权声明 601065