执行机构
材料科学
自愈水凝胶
各向同性
弯曲
各向异性
人工肌肉
制作
竹子
纳米技术
计算机科学
复合材料
人工智能
物理
高分子化学
医学
替代医学
病理
量子力学
作者
Lian Chen,Kaihang Zhang,Jaewan Ahn,Rui Wang,Ye Sun,Jiyoung Lee,Jun Young Cheong,Chunxin Ma,Hongliang Zhao,Gaigai Duan,Guoying Zhang,Xuxu Yang,Il‐Doo Kim,Shaohua Jiang
标识
DOI:10.1016/j.cej.2023.142391
摘要
Stimuli-responsive hydrogels are most promising for the fabrication of autonomous bio-mimetic soft actuators. However, their weak actuation forces and isotropic volume change hinder their practical utilization as versatile actuators, owing to their fragility. Herein, we used the morph-genetic method to fabricate anisotropic bamboo/poly(N-isopropylacrylamide) hydrogel (ABH) complex for use as soft actuator. First of all, the bamboo fiber structure provides an anisotropic framework for the ABH actuator to achieve precise deformational programmability. Secondly, benefiting from the ultra-high directional strength (110 MPa) of bamboo, ABH actuator exhibits sufficiently robust mechanical property, which generates a powerful actuating force. Lastly, owing to the regulation of bamboo sheet and PNIPAM hydrogel, the ABH actuator not only achieves ultra-fast response speed (825°/s of the bending speed), but also has excellent synergetic performance. We demonstrate several bio-mimetic actuating devices based on ABH actuator, inspired by the intricate motions of natural organisms, to highlight how the specific materials properties and their synergy can be systematically exploited for the rational design of soft actuators. Henceforth, it is anticipated that the development of hydrogel actuators could continue to benefit from the use of various naturally-anisotropic materials, such as shape-memory polymers or liquid crystals, for the preparation of further advanced hydrogel actuators by the morph-genetic method.
科研通智能强力驱动
Strongly Powered by AbleSci AI